Модель и метод моделирования в научном исследовании. Модели и моделирование Модель и метод моделирования

При использовании метода моделирования свойства и поведение объекта изучают путем применения вспомогательной системы – модели, находящейся в определенном объективном соответствии с исследуемым объектом.

Под объектом исследования понимается либо некоторая система, элементы которой в процессе достижения конечной цели реализуют один или несколько процессов, либо некоторый процесс, реализуемый элементами одной или нескольких систем. В связи с этим в дельнейшем тексте термины «модель объекта», «модель системы», «модель процесса» следует воспринимать как эквивалентные.

Представления о тех или иных свойствах объектов, их взаимосвязях формируются исследователем в виде описания этих объектов на обычном языке, в виде рисунков, графиков, формул или реализуются в виде макетов и других устройств. Подобные способы описания обобщаются в едином понятии – модель , а построение и изучение моделей называетсямоделированием .

Заслуживает предпочтения следующее определение: модель – объект любой природы, который создается исследователем с целью получения новых знаний об объекте-оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Модель считается адекватной объекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Модели позволяют вынести упрощенное представление о системе и получить некоторые результаты намного проще, чем при изучении реального объекта. Более того, гипотетически модели объекта могут быть исследованы и изучены перед тем, как объект будет создан.

В практике исследования производственно-экономических объектов модели могут применяться для самых разных целей, что вызывает использование моделей различных классов. Построение одной-единственной математической модели для сложной производственной системы практически не представляется возможным без разработки вспомогательных моделей. Поэтому, как правило, при создании конечной математической модели исследуемого объекта строят частные вспомогательные модели, отражающие ту или иную информацию об объекте, имеющуюся у разработчика на данном этапе построения модели.

В основе моделирования лежит теория подобия , которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. Классификация видов моделирования системS приведена на рис.1.1.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий;стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций.Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, адинамическое моделирование отражает поведение объекта во времени.Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, адискретно-непрерывное моделирование используется для тех случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S ) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Рис. 1.1. Классификация видов моделирования систем

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основугипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование . Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализоватьзнаковое моделирование и с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образует из наборов входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системыS математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий.Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S . Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системыS во времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системыS .

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапах ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S , Являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом,методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, аметодом статистических испытаний (Монте-Карло) – численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S , включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска варианта системы. Бале в методологии машинного моделирования будем различать два основных раздела: статику и динамику, – основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Другие виды моделирования . Приреальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.п.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т.е. предприятием, что в большинстве случаев невозможно.

К основным разновидностям реального моделирования относятся:

    Натурное моделирование , под которым понимают проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Необходимо отметить, что такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности.

    Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Подцифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Поданалого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование , в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Целевое назначение модели. По целевому назначению модели подразделяются на модели структуры, функционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

    каноническую модель , характеризующую взаимодействие объекта с окружением через входы и выходы;

    модель внутренней структуры , характеризующую состав компонентов объекта и связи между ними;

    модель иерархической структуры (дерево системы), в которой объект (целое) расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.

Модель структуры обычно представляется в виде блок-схемы, реже графов и матриц связей.

Модели функционирования включают широкий спектр символических моделей, например:

модель жизненного цикла системы, описывающая процессы существования системы от зарождения замысла ее создания до прекращения функционирования;

модели операций, выполняемых объектом и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объекта. Так, в состав моделей операций могут входить модели надежности, характеризующие выход элементов системы из строя под влиянием эксплуатационных факторов, и модели живучести факторов, характеризующие выход элементов системы из строя под влиянием целенаправленного воздействия внешней среды;

информационные модели, отображающие во взаимосвязи источники и потребители информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, например обработки материалов, деятельности персонала, использования информации, в том числе и реализации процедур принятия управленческих решений;

временные модели, описывающие процедуру функционирования объекта во времени и распределение ресурса «время» по отдельным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны, «питаются» от них информацией и совместно с ними позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

При анализе и оптимизации производственно-экономических объектов проводится объединение построенных математических функциональных моделей с математическими стоимостными моделями в единую экономико-математическую модель.

Насколько можно судить по литературным источникам общепринятой классификации моделей экономических систем пока не существует. Однако представляется достаточно полезной классификация математических моделей экономических систем, приведенная в книге Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» (1971 г.) (рис. 1.2).

Рис.1.2. Классификация экономических моделей

Экономико-математической моделью (ЭММ) называется выражение, состоящее из совокупности связанных между собой математическими зависимостями (формулами, уравнениями, неравенствами, логическими условиями величин – факторов, все или часть которых имеют экономический смысл. По своей роли в ЭММ эти факторы целесообразно подразделить на параметры и характеристики (рис. 1.3).

Рис. 1.3. Классификация факторов по их роли в ЭВМ

При этом параметрами объекта называются факторы, характеризующие свойства объекта или составляющих его элементов. В процессе исследования объекта ряд параметров может изменяться, поэтому они называютсяпеременными, которые в свою очередь подразделяются на переменные состояния и переменные управления. Как правило, переменные состояния объекта являются функцией переменных управления и воздействий внешней среды.Характеристиками (выходными характеристиками) называются интересующие исследователя непосредст-венные конечные результаты функционирования объекта (естественно, что выходные характеристики являются переменными состояния). Соответственно характеристики внешней среды описывают свойства внешней среды, которые сказываются на процессе и результате функционирования объекта. Значения ряда факторов, определяющие начальное состояние объекта или внешней среды, называютсяначальными условиями.

При рассмотрении ЭММ оперируют следующими понятиями: критерий оптимальности, целевая функция, система ограничений, уравнения связи, решение модели.

Критерием оптимальности называется некоторый показатель, имеющий экономическое содержание, служащий формализацией конкретной цели управления и выражаемый при помощи целевой функции через факторы модели. Критерий оптимальности определяет смысловое содержание целевой функции. В ряде случаев в качестве критерия оптимальности может выступать одна из выходных характеристик объекта.

Целевая функция математически связывает между собой факторы модели, ее значение определяется значениями этих величин. Содержательный смысл целевой функции придает только критерий оптимальности.

Не следует смешивать критерий оптимальности и целевую функцию. Так, например, критерий прибыли и стоимости произведенной продукции могут описываться одной и той же целевой функцией:

, (1.1)

где
– номенклатура производимой продукции;– объем выпускаi -ой номенклатуры;– прибыль от выпуска единицыi -ой номенклатуры или стоимость единицыi -ой номенклатуры в зависимости от смысла критерия оптимальности.

Критерий прибыли может рассчитываться и по нелинейной целевой функции:

, (1.2)

Если прибыль от выпуска единицы i -ой номенклатуры является функцией от объема выпуска.

При наличии нескольких критериев оптимальности каждый из них будет формализован своей частной целевой функцией , где
– число критериев оптимальности. Для однозначного выбора оптимального решения исследователь может сформулировать новую целевую функцию

Однако целевая функция может уже не нести экономического смысла, в этом случае критерий оптимальности для нее отсутствует.

Система ограничений определяет пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта.

Уравнения связи являются математической формализацией системы ограничений. Между понятиями «система ограничений» и «Уравнения связи» существует точно такая же аналогия, как между понятиями «критерий оптимальности» и «целевая функция»: различные по смыслу ограничения могут описываться одинаковыми уравнениями связи, а одно и то же ограничение в разных моделях записываться различными уравнениями связи.

Таким образом, именно критерий оптимальности и система ограничений в первую очередь определяют концепцию построения будущей математической модели, т.е. концептуальную модель, а их формализация, т.е. целевая функция и уравнения связи, представляют собой математическую модель.

Решением математической модели называется такой набор (совокупность) значений переменных, который удовлетворяет ее уравнениям связи. Решения, имеющие экономический смысл, называют структурно допустимыми. Модели, имеющие много решений, называются вариантными в отличие от безвариантных, имеющих одно решение. Среди структурно допустимых решений вариантной модели, как правило, находится одно решение, при котором целевая функция в зависимости от смысла модели имеет наибольшее или наименьшее значение. Такое решение, как и соответствующее значение целевой функции, называетсяоптимальным (в частности, наименьшим или наибольшим).

Использование ЭММ, особенно оптимальных, предполагает не только построение модели, соответствующей поставленной задаче, но и ее решение при помощи подходящего метода. В связи с этим иногда под моделированием (в узком смысле) понимается этап нахождения решения модели, т.е. вычисления значений исследуемых характеристик и определение оптимальности различных вариантов изучаемого объекта с целью выбора наилучшего варианта его построения и функционирования. Данный этап представляет собой реализацию и исследование ЭММ на определенном наборе вычислительных средств. Выбор метода решения оптимизационных ЭММ зависит от математической формы, связывающей факторы модели, наличия тех или иных признаков (учет динамики, учет стохастичности и т.д.). С точки зрения корректного выбора метода решения модели наиболее существенными признаками являются характер цели исследования, формализованность связей между параметрами и характеристиками, учет вероятностной природы объекта, а также фактора времени.

По характеру цели исследования ЭММ делятся на оптимизационные (нормативные) иописательные (дескриптивные или ЭММ прямого счета).

Характерной чертой оптимизационных моделей является наличие одной или нескольких целевых функций. При этом в первом случае оптимизационные ЭММ называются монокритериальными , а во втором –многокритериальными . В общем виде монокритериальная ЭММ может быть представлена следующей системой отношений:

где Е – критерий оптимальности объекта;– управляемые переменные,
;– неуправляемые факторы модели;
;– уравнения связи, представляющие собой формализацию системы ограничений,
;– целевая функция – формализованное выражение критерия оптимальности.

Выражение
означает, что в ограничениях может стоять любое из приведенных в фигурных скобках логических условий.

Решение модели, заданной соотношениями (1.4) и (1.5), заключается в нахождении совокупности значений переменных

,

Обращающий в max (илиmin ) целевую функциюЕ при заданных уравнениях связи.

Специфика конкретных задач управления производством определила разнообразие типов оптимизационных ЭММ. Это вызвало для ряда наиболее часто повторяющихся типов ситуаций разработку «стандартных» экономико-математических методов их описания, например, распределительные задачи различных классов, задачи управления запасами, ремонта и замены оборудования, проектирования сетей и выбора маршрутов и т.д.

Существенным признаком описательных моделей является отсутствие в них критерия оптимальности. Решение, даваемое ЭММ прямого счета, обеспечивает либо вычисление набора выходных характеристик объекта для одного или нескольких вариантов начальных условий и входных характеристик объекта, либо нахождение какой-либо совокупности значений в структурно допустимой области решений. Примеры типовых задач управления машиностроительным производством, решаемых с помощью описательных моделей, приведены в табл. 1.1.

Таблица 1.1. Примеры описательных моделей

Тип задачи

Вид модели

Математический метод решения

Задачи планирования без оптимизации (расчет объемов производства по видам продукции, увязка планов производства с ресурсами и т.п.)

Балансовые модели

Аппарат линейной алгебры, матричное исчисление

Задачи сетевого планирования и управление (СПУ) без оптимизации

Расчет по формулам модели СПУ

Аппарат теории графов

Задача учета и статистики (оперативный учет, получение различных форм отчетности и т.п.)

Расчет по формулам

Задачи контроля и анализа (анализ влияния и факторов, выявление тенденций, отслеживание отклонений и установление их причин)

Факторный анализ, дисперсионный анализ, регрессионный анализ

Задача создания нормативной базы

Статистические модели обработки реализаций случайных величин

Расчет параметров функционирования сложных систем с неформализованными связями.

Расчет по формулам имитационных моделей

Задачи прогнозирования

Модели регрессионного анализа, оценка параметров и проверка статистических гипотез

Факторный анализ, дисперсионный анализ, регрессионный анализ, аппарат математической статистики

В зависимости от степени формализованности связей f иg i между факторами моделей в выражениях (1.4) и (1.5) различаютаналитические иалгоритмические модели.

Аналитической формой записи называется запись математической модели в виде алгебраических уравнений или неравенств, не имеющих разветвлений вычислительного процесса при определении значений любых переменных состояния модели, целевой функции и уравнений связи. Если в математических моделях единственная целевая функцияf и ограниченияg j заданы аналитически, то подобные модели относятся к классу моделей математического программирования. Характер функциональных зависимостей, выраженных в функцияхf иg j , может быть линейным и нелинейным. Соответственно этому ЭММ делятся налинейные инелинейные , а среди последних в специальные классы выделяютсядробно -линейные ,кусочно-линейные ,квадратичные ивыпуклые модели.

Если мы имеем дело со сложной системой, то зачастую гораздо легче построить ее модель в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий – разветвлений хода течения процесса. Математическое описание для элементов может быть очень простым, однако взаимодействие большого количества простых по математическому описанию элементов и делает эту систему сложной. Алгоритмически же можно описывать даже такие объекты, которые в силу их сложности или громоздкости в принципе не допускают аналитического описания. В связи с этим к алгоритмическим моделям относятся такие, в которых критерии и (или) ограничения описываются математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. К алгоритмическим моделям относятся и так называемые имитационные модели – моделирующие алгоритмы, имитирующие поведение элементов изучаемого объекта и взаимодействие между ними в процессе функционирования.

В зависимости от того, содержит ли ЭММ случайные факторы, она может быть отнесена к классу стохастических илидетерминированных .

В детерминированных моделях ни целевая функцияf , ни уравнения связиg j не содержат случайных факторов. Следовательно, для данного множества входных значений модели на выходе может быть получен только один-единственный результат. Длястохастических ЭММ характерно наличие среди факторовмодели, описываемой соотношениями (1.4) и (1.5), таких, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, причем среди функцийf иg j могут быть и случайные функции. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация стохастических ЭММ в большинстве случаев осуществляется на ЭВМ методами имитационного статистического моделирования.

Следующим признаком, по которому можно различать ЭММ, является связь с фактором времени. Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими , а модели, в которых зависимость от времениt либо отсутствует совсем, либо проявляется слабо или неявно, называютстатическими . Интересны в этом отношении имитационные модели: по механизму функционирования они являются динамическими (в модели идет имитация работы объекта в течении некоторого периода времени), а по результатам моделирования – статическими (например, ищется средняя производительность объекта за моделируемый период времени).

Статические модели представляют собой известную степень приближения к реальным объектам и системам, функционирующим во времени. Во многих случаях степень такого приближения, проявляющаяся в допущениях о неизменности или различного рода усреднениях факторов во времени (косвенно или приблизительно учитывающих фактор времени в определенных границах его изменения), является достаточной для практического применения статических моделей.

курсовая РАБОТА

«Методы моделирования»

Введение

Метод конечных элементов и метод конечных разностей

Метод конечных объёмов

Метод подвижных клеточных автоматов

Метод молекулярной динамики

Метод дискретного элемента

Метод компонентных цепей

Метод узловых потенциалов

Метод переменных состояния

Заключение

Литература

Введение

Компьютерная модель (англ. computer model), или численная модель (англ. computational model) - компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая абстрактную модель некоторой системы. Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

К основным этапам компьютерного моделирования относятся:

постановка задачи, определение объекта моделирования;

разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;

формализация, то есть переход к математической модели; создание алгоритма и написание программы;

планирование и проведение компьютерных экспериментов;

анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритмов, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Компьютерное моделирование применяют для широкого круга задач, таких как:

анализ распространения загрязняющих веществ в атмосфере

проектирование шумовых барьеров для борьбы с шумовым загрязнением

конструирование транспортных средств

полетные имитаторы для тренировки пилотов

прогнозирование погоды

эмуляция работы других электронных устройств

прогнозирование цен на финансовых рынках

исследование поведения зданий, конструкций и деталей под механической нагрузкой

прогнозирование прочности конструкций и механизмов их разрушения

проектирование производственных процессов, например химических

стратегическое управление организацией

исследование поведения гидравлических систем: нефтепроводов, водопровода

моделирование роботов и автоматических манипуляторов

моделирование сценарных вариантов развития городов

моделирование транспортных систем

имитация краш-тестов

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов

1. Метод конечных элементов и метод конечных разностей

Метод конечных элементов является численным методом решения дифференциальных уравнений, встречающихся в физике и технике.

Основная идея метода конечных элементов состоит в том, что любую непрерывную величину, такую, как температура, давление и перемещение, можно аппроксимировать дискретной моделью, которая строится на множестве кусочно-непрерывных функций определенных на конечном числе подобластей. Кусочно-непрерывные функции определяются с помощью значений непрерывной величины в конечном числе точек рассматриваемой области. В общем случае непрерывная величина заранее неизвестна и нужно определить значения этой величины в некоторых внутренних точках области. Дискретную модель, однако, очень легко «построить, если сначала предположить, что числовые значения этой величины в каждой внутренней точке области известны. После этого можно перейти к общему случаю. Итак, при построении дискретной модели непрерывной величины поступают следующим образом:

В рассматриваемой области фиксируется конечное число точек. Эти точки называются узловыми точками или просто узлами.

Значение непрерывной величины в каждой узловой точке считается переменной, которая должна быть определена. Область определения непрерывной величины разбивается на конечное число подобластей, называемых элементами. Эти элементы имеют общие узловые точки и в совокупности аппроксимируют форму области. Непрерывная величина аппроксимируется на каждом элементе полиномом, который определяется с помощью узловых значений этой величины. Для каждого элемента определяется свой полином, но полиномы подбираются таким образом, чтобы сохранялась непрерывность величины вдоль границ элемента.


Основная концепция метода конечных элементов может быть наглядно проиллюстрирована на одномерном примере заданного распределения температуры в стержне, показанном на рис. 1.1. Рассматривается непрерывная величина Т(х), область определения-отрезок- OL вдоль оси х. Фиксированы и пронумерованы пять точек на оси х (рис. 1.2 а). Это узловые точки; совсем не обязательно располагать их на равном расстоянии друг от друга. Очевидно, можно ввести в рассмотрение более пяти точек, но этих пяти вполне достаточно, чтобы проиллюстрировать основную идею метода. Значения Т(x) В данном случае известны в каждой узловой точке. Эти фиксированные значения представлены графически на рис. 1.2 б и обозначены. В соответствии с номерами узловых точек через T1 + T2 + … + T5 Разбиение области на элементы может быть проведено двумя различными способами. Можно, например, ограничить каждый элемент двумя соседними узловыми точками, образовав четыре элемента (рис. 1.4 а), или разбить область на два элемента, каждый из которых содержат три узла (рис. 1.3 6). Соответствующий элементу полном определяется по значениям Т(x) в узловых точках элемента. В случае разбиения области на четыре элемента, когда на каждый элемент приходится по два узла, функция элемента будет линейна по х (две точки однозначно определяют прямую лилию). Окончательная аппроксимация Т(x) будет состоять из четырех кусочно-линейных функций, каждая из которых определена на отдельном элементе (рис. 1.4 с). Другой способ разбиения области на два элемента с тремя узловыми точками приводит к представлению функции элемента в виде полинома второй степени. В этом случае окончательной аппроксимацией Т(х) будет совокупность двух кусочно-непрерывных квадратичных функций. Отметим, что это приближение будет именно кусочно-непрерывным, так как углы наклона графиков обеих этих функций могут иметь разные значения в третьем узле.

В общем случае распределение температуры неизвестно и мы хотим определить значения этой величины в некоторых точках. Методика построения дискретной модели остается точно такой же, как описано выше, но с добавлением одного дополнительного шага. Снова определяются множество узлов и значения температуры в этих узлах Т1,Т2,Т3 …, которые теперь являются переменными так как они заранее неизвестны. Область разбивается на элементы, на каждом из которых определяется соответствующая функция элемента. Узловые значения Т(х) должны быть теперь «отрегулированы» таким образом, чтобы обеспечивалось «наилучшее» приближение к истинному распределению температуры. Это «регулирование» осуществляется путем минимизации некоторой величины, связанной с физической сущностью задачи. Если рассматривается задача распространения тепла, то минимизируется функционал, связанный с соответствующим дифференциальным уравнением. Процесс минимизации сводится к решению систем линейных алгебраических уравнений относительно узловых значений Т(х).



При построении дискретной модели непрерывной величины, определенной в двух или трехмерной области, основная концепция метода конечных элементов используется аналогично. В двумерном случае элементы описываются функциями от х, у, при этом чаще всего рассматриваются элементы в форме треугольника или четырехугольника. Функции элементов изображаются теперь плоскими (рис. 1.5) или Криволинейными (рис. 1.6) поверхностями. Функция элемента будет представляться плоскостью, если для данного элемента взято минимальное число узловых точек, которое для треугольного элемента равняется трем, а для четырехугольного - четырем.

Если используемое число узлов больше минимального то - функция элемента будет соответствовать криволинейная поверхность. Кроме того, избыточное число узлов позволяет рассматривать элементы с криволинейными границами. Окончательной аппроксимацией двумерной непрерывной величины будет служить совокупность кусочно-непрерывных поверхностей, каждая из которых определяется на отдельном элементе с помощью значений в соответствующих узловых точках. Важным аспектом метода конечных элементов является возможность выделить из набора элементов типичный элемент при определении функции элемента. Это позволяет определять функцию элемента независимо от относительного положения элемента в общей связной модели и от других функций элементов. Задание функции элемента через произвольное множество узловых значений и координат позволяет использовать функции элемента для аппроксимации геометрии области.



Преимущества и недостатки

В настоящее время область применения метода конечных элементов очень обширна и охватывает все физические задачи, которые могут быть описаны дифференциальными уравнениями. Наиболее важными преимуществами метода конечных элементов, благодаря которым он широко используется, являются следующие:

Свойства материалов смежных элементов не должны быть обязательно одинаковыми. Это позволяет применять метод к телам, составленным из нескольких материалов.

Криволинейная область может быть аппроксимирована с помощью прямолинейных элементов или описана точно с помощью криволинейных элементов. Таким образом, методом можно пользоваться не только для областей с «хорошей» формой границы.

Размеры элементов могут быть переменными. Это позволяет укрупнить или измельчить сеть разбиения области на элементы, если в этом есть необходимость.

С помощью метода конечных элементов не представляет труда рассмотрение граничных условий с разрывной поверхностной нагрузкой, а также смешанных граничных условий.

Указанные выше преимущества метода конечных элементов могут быть использованы при составлении достаточно общей программы для решения частных задач определенного класса. Например, с помощью программы для асимметрической задачи о распространении тепла можно решать любую частную задачу этого типа. Факторами, препятствующими расширению круга задач, решаемых методом конечных элементов, являются ограниченность машинной памяти и высокая стоимость вычислительных работ.

Главный недостаток метода конечных элементов заключается в необходимости составления вычислительных программ и применения вычислительной техники. Вычисления, которые требуется проводить при использовании метода конечных элементов, слишком громоздки для ручного счета даже в случае решения очень простых задач. Для решения сложных задач необходимо использовать быстродействующую ЭВМ, обладающую большой памятью.настоящее время имеются технологические возможности для создания достаточно мощных ЭВМ.

Метод конечных разностей является старейшим методом решения краевых задач.

Применение метода конечных разностей позволяет свести дифференциальную краевую задачу к системе нелинейных в общем случае алгебраических уравнений относительно неизвестных узловых значений функций.

Основная идея метода конечных разностей (метода сеток) для приближенного численного решения краевой задачи для двумерного дифференциального уравнения в частных производных состоит в том, что

) на плоскости в области А, в которой ищется решение, строится сеточная область As (рис.1.7), состоящая из одинаковых ячеек размером s (s - шаг сетки) и являющаяся приближением данной области А;

) заданное дифференциальное уравнение в частных производных заменяется в узлах сетки As соответствующим конечно-разностным уравнением;

) с учетом граничных условий устанавливаются значения искомого решения в граничных узлах области Аs.

Рис. 1.7. Построение сеточной области

Решая полученную систему конечно-разностных алгебраических уравнений, получим значения искомой функции в узлах сетки Аs, т.е. приближенное численное решение краевой задачи. Выбор сеточной области Аs зависит от конкретной задачи, но всегда надо стремиться к тому, чтобы контур сеточной области Аs наилучшим образом аппроксимировал контур области А.

Рассмотрим уравнение Лапласа

(1)

где p (x, y) - искомая функция, x, y - прямоугольные координаты плоской области и получим соответствующее ему конечно-разностное уравнение.

Заменим частные производные и в уравнении (1) конечно-разностными отношениями:

(2)

(3)

Тогда решая уравнение (1) относительно , получим:

Задав значения функции в граничных узлах контура сеточной области Аs в соответствии с граничными условиями и решая полученную систему уравнений (4) для каждого узла сетки, получим численное решение краевой задачи (1) в заданной области А.

Ясно, что число уравнений вида (4) равно количеству узлов сеточной области Аs, и чем больше узлов (т.е. чем мельче сетка), тем меньше погрешность вычислений. Однако надо помнить, что с уменьшением шага s возрастает размерность системы уравнений и следовательно, время решения. Поэтому сначала рекомендуется выполнить пробные вычисления с достаточно крупным шагом s , оценить полученную погрешность вычислений, и лишь затем перейти к более мелкой сетке во всей области или в какой-то ее части.

Сравнение метода конечных разностей и метода конечных элементов

Оба метода относятся к классу сеточных методов приближенного решения краевых задач. С точки зрения теоритических оценок точности методы обладают примерно равными возможностями. В зависимости от формы области, краевых условий, коэффициентов исходного уравнения оба метода имеют погрешности аппроксимации от первого до четвертого порядка относительно шага. В силе этого они успешно используются для разработки программных комплексов автоматизированного проектирования технических объектов.

Методы конечных элементов и конечных разностей имеют ряд существенных отличий. Прежде всего, методы различны в том, что в методе конечных разностей аппроксимируется производные искомых функций, а метод конечных элементов - само решение, т.е. зависимость искомых функций от пространственных координат и времени. Методы сильно отличаются и в способе построения сеток. В методе конечных разностей строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в около граничных узлах. В связи с этим метод конечных разностей чаще применяется для анализа задач с прямолинейными границами областей определения функций. К числу традиционных задач, решаемых на основе метода конечных разностей, относятся исследования течений жидкостей и газов в трубах, каналах с учетом теплообменных процессов и ряд других. В методе конечных элементов разбиение на элементы производится с учетом геометрических особенностей области, процесс разбиения начинается от границы с целью наилучшей аппроксимации её геометрии. Затем разбивают на элементы внутренние области, причем алгоритм разбиения строится так чтобы элементы удовлетворяли некоторым ограничениям, например стороны треугольников не слишком отличались по длине и т.д. Поэтому метод конечных элементов наиболее часто используется для решения задач с произвольной областью определения функций, таких, как расчет на прочность деталей и узлов строительных конструкций, авиационных и космических аппаратов, тепловой расчет двигателей и т.д.

Метод конечных объёмов

алгоритм программа моделирование

Отправной точкой метода конечных объёмов (МКО) является интегральная формулировка законов сохранения массы, импульса, энергии и др. Балансовые соотношения записываются для небольшого контрольного объема; их дискретный аналог получается суммированием по всем граням выделенного объема потоков массы, импульса и т.д., вычисленных по каким - либо квадратурным формулам. Поскольку интегральная формулировка законов сохранения не накладывает ограничений на форму контрольного объема, МКО пригоден для дискретизации уравнений гидрогазодинамики как на структурированных, так и на неструктурированных сетках с различной формой ячеек, что, в принципе, полностью решает проблему сложной геометрии расчетной области.

Следует заметить, однако, что использование неструктурированных сеток является довольно сложным в алгоритмическом отношении, трудоемким при реализации и ресурсоемким при проведении расчетов, в особенности при решении трехмерных задач. Это связано как с многообразием возможных форм ячеек расчетной сетки, так и с необходимостью применения более сложных методов для решения системы алгебраических уравнений, не имеющей определенной структуры. Практика последних лет показывает, что развитые разработки вычислительных средств, базирующихся на использовании неструктурированных сеток, по силам лишь достаточно крупным компаниям, имеющим соответствующие людские и финансовые ресурсы. Гораздо более экономичным оказывается использование блочно-структурированных сеток, предполагающее разбиение области течения на несколько подобластей (блоков) относительно простой формы, в каждой из которых строится своя расчетная сетка. В целом такая составная сетка не является структурированной, однако внутри каждого блока сохраняется обычная индексная нумерация узлов, что позволяет использовать эффективные алгоритмы, разработанные для структурированных сеток. Фактически, для перехода от одноблочной сетки к многоблочной необходимо лишь организовать стыковку блоков, т.е. обмен данными между соприкасающимися подобластями для учета их взаимного влияния. Заметим также, что разбиение задачи на отдельные относительно независимые блоки естественным образом вписывается в концепцию параллельных вычислений на кластерных системах с обработкой отдельных блоков на разных процессорах (компьютерах). Все это делает использование блочно-структурированных сеток в сочетании с МКО сравнительно простым, но чрезвычайно эффективным средством расширения геометрии решаемых задач, что исключительно важно для небольших университетских групп, разрабатывающих собственные программы в области гидрогазодинамики.

Отмеченные выше достоинства МКО послужили основанием к тому, что в начале 1990-х гг. именно этот подход с ориентацией на использование блочно-структурированных сеток был выбран авторами в качестве основы для разработки собственного пакета программ широкого профиля для задач гидрогазодинамики и конвективного теплообмена.

Математическое описание:

где: - изменение некоторой физической величины

Конвективное слагаемое в абстрактном законе сохранения физической величины

Диффузное слагаемое в абстрактном законе сохранения физической величины

Источниковое слагаемое в абстрактном законе сохранения физической величины

Метод подвижных клеточных автоматов

Метод подвижных клеточных автоматов (MCA, от англ. movable cellular automata) - это метод вычислительной механики деформируемого твердого тела, основанный на дискретном подходе. Он объединяет преимущества метода классических клеточных автоматов и метода дискретных элементов. Важным преимуществом метода клеточных автоматов является возможность моделирования разрушения материала, включая генерацию повреждений, распространение трещин, фрагментацию и перемешивание вещества. Моделирование именно этих процессов вызывает наибольшие трудности в методах механики сплошных сред (метод конечных элементов, метод конечных разностей и др.), что является причиной разработки новых концепций, например, таких как перидинамика. Известно, что метод дискретных элементов весьма эффективно описывает поведение гранулированных сред. Особенности расчета сил взаимодействия между подвижными клеточными автоматами позволяют описывать в рамках единого подхода поведение как гранулированных, так и сплошных сред. Так, при стремлении характерного размера автомата к нулю формализм метода клеточных автоматов позволяет перейти к классическим соотношениям механики сплошной среды.

В рамках метода клеточных автоматов объект моделирования описывается как набор взаимодействующих элементов/автоматов. Динамика множества автоматов определяется силами их взаимодействия и правилами для изменения их состояния. Эволюция этой системы в пространстве и во времени определяется уравнениями движения. Силы взаимодействия и правила для связанных элементов определяются функциями отклика автомата. Эти функции задаются для каждого автомата. В течение движения автомата следующие новые параметры клеточного автомата рассчитываются: - радиус-вектор автомата; - скорость автомата;

Угловая скорость автомата;

Вектор поворота автомата; - масса автомата; - момент инерции автомата.

Ввод нового типа состояния требует нового параметра используемого в качестве критерия переключения в состояние связанные. Это определяется как параметр перекрытия автоматов hij.

И так, связь клеточных автоматов характеризуется величиной их перекрытия.

Рис 3.1 Начальная структура формируется установкой свойств особой связи между каждой парой соседних элементов.

По сравнению с методом классических клеточных автоматами в методе MCA не только единичный автомат но и также связи автоматов могут переключаться. В соответствии с концепцией бистабильных автоматов вводится два состояния пары (взаимосвязь):


Итак, изменение состояния связи пары определяется относительным движением автоматов, и среда формируемая такими парами может быть названа бистабильной средой.

Уравнения движения клеточных автоматов

Эволюция клеточных автоматов среды описывается следующими уравнениями трансляционного движения:

(6)

Рис 3.2 Учет сил, действующих между автоматами ij со стороны их соседей.

Здесь mi это масса автомата i, pij это центральная сила действующая между автоматами i и j, C(ij, ik) это особый коэффициент ассоциированный с переносом параметра h из пары ij к ik, ψ(αij, ik) это угол между направлениями ij и ik.

Вращательные движения также могут быть учтены с точностью ограниченной размером клеточного автомата. Уравнения вращательного движения могут быть записаны следующим образом:

Здесь Θij угол относительного поворота (это параметр переключения подобно hij трансляционного движения), qij(ji) это расстояние от центра автомата i(j) до точки контакта с автоматом j(i) (угловой момент), τij это парное тангенциальное взаимодействие, S(ij, ik(jl)) это особый коэффициент ассоциированный с параметром переноса Θ от одной пары к другой (это похоже на C(ij, ik(jl)) из уравнений трансляционного движения). Следует отметить, что уравнения полностью аналогичны уравнениям движения для много-частичной среды. Определение деформации пары автоматов

Рис 3.3 Вращение тела как целого не приводит к деформации между автоматами

Смещение пары автоматов Безразмерный параметр деформации для смещения i j пары автоматов записывается как:

(8)

В этом случае:

где Δt временной шаг, Vnij - зависимая скорость. Вращение пары автоматов может быть посчитано аналогично с связью последнего смешения.

Необратимая деформация в методе клеточных автоматов

Параметр εij используется как мера деформации автомата i взаимодействующего с автоматом j. Где qij - расстояние от центра автомата i до точки его контакта с автоматом j; Ri=di/2 (di - размер автомата i).

Например, титановый образец при циклическом нагружении (растяжение-сжатие). Диаграмма деформирования показана на следующем рисунке:

Преимущества метода клеточных автоматов

Благодаря подвижности каждого автомата метод клеточных автоматов позволяет напрямую учитывать такие события как:

перемешивание масс

эффект проникновения

химические реакции

интенсивные деформации

фазовые превращения

накопление повреждений

фрагментация и трещины

генерация и развитие повреждений

Используя различные граничные условия разных типов (жесткие, упругие, вязко-упругие, т.д.) можно имитировать различные свойства окружающей среды, содержащей моделируемую систему. Можно моделировать различные режимы механического нагружения (растяжение, сжатие, сдвиг, т.д.) с помощью настроек дополнительных состояний на границах.

Метод молекулярной динамики

Метод молекулярной динамики (метод МД) - метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения

Метод классической (полноатомной) молекулярной динамики позволяет с использованием современных ЭВМ рассматривать системы, состоящие из нескольких миллионов атомов на временах порядка нескольких пикосекунд. Применение других подходов (тяжело-атомные, крупно-зернистые модели) позволяет увеличить шаг интегрирования и тем самым увеличить доступное для наблюдения время до порядка микросекунд. Для решения таких задач все чаще требуются большие вычислительные мощности, которыми обладают суперкомпьютеры.

Основные положения метода

Для описания движения атомов или частиц применяется классическая механика. Закон движения частиц находят при помощи аналитической механики.

Силы межатомного взаимодействия можно представить в форме классических потенциальных сил (как градиент потенциальной энергии системы).

Точное знание траекторий движения частиц системы на больших промежутках времени не является необходимым для получения результатов макроскопического (термодинамического) характера.

Наборы конфигураций, получаемые в ходе расчетов методом молекулярной динамики, распределены в соответствии с некоторой статистической функцией распределения, например отвечающей микроканоническому распределению.

Ограничения применимости метода

Метод молекулярной динамики применим, если длина волны Де Бройля атома (или частицы) много меньше, чем межатомное расстояние.

Также классическая молекулярная динамика не применима для моделирования систем, состоящих из легких атомов, таких как гелий или водород. Кроме того, при низких температурах квантовые эффекты становятся определяющими и для рассмотрения таких систем необходимо использовать квантовохимические методы. Необходимо, чтобы времена на которых рассматривается поведение системы были больше, чем время релаксации исследуемых физических величин.

Применение

Метод молекулярной динамики, изначально разработанный в теоретической физике, получил большое распространение в химии и, начиная с 1970х годов, в биохимии и биофизике. Он играет важную роль в определении структуры белка и уточнении его свойств (см. также кристаллография, ЯМР). Взаимодействие между объектами может быть описано силовым полем (классическая молекулярная динамика), квантовохимической моделью или смешанной теорией, содержащей элементы двух предыдущих (QM/MM (quantum mechanics/molecular mechanics, QMMM (англ.)).

Наиболее популярными пакетами программного обеспечения для моделирования динамики биологических молекул являются: AMBER, CHARMM (и коммерческая версия CHARMm), GROMACS, GROMOS,Lammps и NAMD.

Метод дискретного элемента

Метод дискретного элемента (DEM, от англ. Discrete element method) - это семейство численных методов предназначенных для расчёта движения большого количества частиц, таких как молекулы, песчинки, гравий, галька и прочих гранулированных сред. Метод был первоначально применён Cundall в 1971 для решения задач механики горных пород. Williams, Hocking и Mustoe детализировали теоретические основа метода. В 1985 они показали, что DEM может быть рассмотрен как обобщение метода конечных элементов (МКЭ, FEM). В книге Numerical Modeling in Rock Mechanics, by Pande, G., Beer, G. and Williams, J.R. описано применение этого метода для решения геомеханических задач. Теоретические основы метода и возможности его применения неоднократно рассматривалось на 1-й, 2-й и 3-й Международной Конференции по Методам Дискретного Элемента. Williams, и Bicanic (см. ниже) опубликовали ряд журнальных статей описывающих современные тенденции в области DEM. В книге The Combined Finite-Discrete Element Method, Munjiza детально описано комбинирование Метода Конечного Элемента и Метода Дискретного Элемента.

Этот метод иногда называют молекулярной динамикой (MD), даже когда частицы не являются молекулами. Однако, в противоположность молекулярной динамике, этот метод может быть использован для моделирования частиц с не сферичной поверхностью. Методы дискретного элемента очень требовательны к вычислительным ресурсам ЭВМ. Это ограничивает размер модели или количество используемых частиц. Прогресс в области вычислительной техники позволяет частично снять это ограничение за счет использования параллельной обработки данных. Альтернативой обработки всех частиц отдельно является обработка данных как сплошной среды. Например, если гранульный поток подобен газу или жидкости, можно использовать вычислительную гидродинамику.

Основные принципы метода

Моделирование МДЭ начинается c помещения всех частиц в конкретное положение и придания им начальной скорости. Затем силы, воздействующие на каждую частицу, рассчитываются, исходя из начальных данных и соответствующих физических законов.

Следующие силы могут иметь влияние в макроскопических моделях:

трение, когда две частицы касаются друг друга;

отскакивание, когда две частицы сталкиваются;

гравитация (сила притяжения между частицами из-за их массы), которая имеет отношение только при астрономическом моделировании;

На молекулярном уровне, мы можем рассматривать Силу Кулона, электростатическое притяжение или отталкивание частиц, несущих электрический заряд;

Отталкивание Паули, когда два атома находятся вблизи друг от друга;

Силу Ван дер Ваальса.

Все эти силы складываются, чтобы найти результирующую силу, воздействующую на каждую частицу. Чтобы рассчитать изменение в положении и скорости каждой частицы в течение определенного временного шага из законов Ньютона, используется метод интеграции. После этого новое положение используется для расчёта сил в течение следующего шага, и этот цикл программы повторяется до тех пор, пока моделирование не закончится.

Типичные методы интеграции используемые в методе дискретного элемента:

алгоритм Верлета,

скорость Верлета,

метод прыжка.

Дальнодействующие силы

Когда во внимание принимаются дальнодействующие силы (гравитация, сила Кулона), взаимодействия каждой пары частиц необходимо рассчитывать. Число взаимодействий, а следовательно, ресурсоёмкость расчёта, возрастает с увеличением количества частиц квадратично, что не приемлемо для моделей с большим числом частиц. Возможный путь решить эту проблему - объединить некоторые частицы, которые находятся на расстоянии от рассматриваемой частицы, в одну псевдочастицу. Рассмотрим, например, взаимодействие между звездой и отдаленной галактикой: ошибка, возникающая из-за объединения массы всех звезд в удалённой галактике в одну точку, незначительна. Для того, чтобы определить, какие частицы могут быть объединены в одну псевдочастицу, используются так называемые древесные алгоритмы. Эти алгоритмы распределяют все частицы в виде дерева, квадрадерева в случае двухмерной модели и октадерева в случае трехмерной модели.

Модели в молекулярной динамике делят пространство, в котором происходит моделируемый процесс, на ячейки. Частицы, уходящие через одну сторону ячейки просто вставляются с другой стороны (периодические граничные условия); так же происходит и с силами. Силы перестают приниматься в расчёт после так называемой дистанции отсечения (обычно половина длины ячейки), так что на частицу не воздействует зеркальное расположение той же частицы на другой стороне ячейки. Таким образом, можно увеличивать количество частиц простым копированием ячеек.

Применение

Фундаментальным предположением метода является то, что материал состоит из отдельных, дискретных частиц. Эти частицы могут иметь различные поверхности и свойства. Примеры:

жидкости и растворы, например сахар или белок;

сыпучие вещества в элеваторе, такие как крупа;

гранулированный материал, такой как песок;

порошки, такие как тонер.

Типичные отрасли промышленности использующие DEM:

Горнодобывающая

Фармацевтическая

Нефтегазовая

Сельскохозяйственная

Химическая

Метод компонентных цепей

Метод компонентных цепей - это метод, предназначенный для моделирования физически неоднородных устройств и систем, исходная информация о которых задана в виде модели структуры. Основной структурной сущностью метода компонентных цепей является многополюсный компонент с произвольным числом связей, которым инцидентны переменные связей.

Математическая модель компонента - это уравнение либо система уравнений (линейных, нелинейных, обыкновенных дифференциальных 1-го порядка) относительно его переменных связей и внутренних переменных. Совокупность компонентов, связи которых, именуемые ветвями компонентных цепей, объединены в общих точках, именуемых узлами, определяется как компонентная цепь Ск = {К, S, N}, где К - множество компонентов; S - множество связей компонентов из К; N - множество узлов цепи.

В соответствии с типом переменных, действующих на связи, определены два основных типа связей:

связи энергетического типа S%, которым соответствует пара топологических координат и пара дуальных переменных , где nk - номер узла k-й связи; bk - номер ветви, nk - знак, задающий ориентацию связи, , - переменные связи потенциального и потокового типа;

связи информационного типа S"k, которым соответствует одна топологическая координата и одна переменная связи, имеющая произвольный физический смысл .

Принципиальное отличие переменных потенциального и потокового типа состоит в том, что для последних при формировании математической модели компонентных цепей в нее автоматически включаются уравнения узловых топологических законов сохранения. Таким образом, математическая модель компонентных цепей имеет вид

(11)

где - совокупность уравнений моделей компонентов, входящих в компонентные цепи; - уравнения базового узла; - уравнения узловых топологических законов сохранения для переменных потокового типа, записанные для всех узлов за исключением базового; - множество связей энергетического типа.

Согласно числу переменных, действующих на связях, выделяются связи скалярного и векторного типа. На связи скалярного типа могут действовать лишь по одной потенциальной и потоковой переменной, т.е. по одной разнотипной переменной. К скалярным связям относятся связи энергетического и информационного типов. Связи векторного типа может быть инцидентно более двух переменных одного типа. Связи векторного типа являются объединением скалярных. Методом компонентных цепей предусматривается автоматическое формирование моделей компонентных цепей во временной и в частотной (для линейных непрерывных схем) областях. При моделировании во временной области

где - комплексная частота, а мнимые составляющие реализуются посредством внутренних переменных. В результате алгебраизации и линеаризации дифференциальных и нелинейных уравнений модель компонентных цепей принимает вид системы линейных алгебраических уравнений относительно переменных связей компонентных цепей и вспомогательных переменных:

где Ф - квадратная матрица коэффициентов; W - вектор-столбец правых частей; V - вектор-столбец решения компонентных цепей, включающий векторы потенциальных, потоковых и внутренних переменных компонентных цепей.

7. Метод узловых потенциалов

Метод узловых потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Очень часто необходимым этапом при решении самых разных задач электроники является расчет электрической цепи. Под этим термином понимается процесс получения полной информации о напряжениях во всех узлах и о токах во всех ветвях заданной электрической цепи. Для расчета линейной цепи достаточно записать необходимое число уравнений, которые базируются на правилах Кирхгофа и законе Ома, а затем решить полученную систему.

Однако на практике записать систему уравнений просто из вида схемы удается только для очень простых схем. Если в схеме более десятка элементов или она содержит участки типа мостов, то для записи системы уравнений уже требуются специальные методики. К таким методикам относятся метод узловых потенциалов и метод контурных токов.

Метод узловых потенциалов не привносит ничего нового к правилам Кирхгофа и закону Ома. Данный метод лишь формализует их использование настолько, чтобы их можно было применить к любой, сколь угодно сложной цепи. Иными словами, метод даёт ответ на вопрос «как использовать законы для расчета данной цепи?».

Если в цепи, состоящей из У узлов и Р рёбер известны все характеристики звеньев (полные сопротивления R, величины источников ЭДС E и тока J), то возможно вычислить токи Ii во всех рёбрах и потенциалы φi во всех узлах. Поскольку электрический потенциал определён с точностью до произвольного постоянного слагаемого, то потенциал в одном из узлов (назовём его базовым узлом) можно принять равным нулю, а потенциалы в остальных узлах определять относительно базового узла. Таким образом, при расчёте цепи имеем У+Р-1 неизвестных переменных: У-1 узловых потенциалов и Р токов в рёбрах.

Не все из указанных переменных независимы. Например, исходя из закона Ома для участка цепи, токи в звеньях полностью определяются потенциалами в узлах:

(12)

С другой стороны, токи в рёбрах однозначно определяют распределение потенциала в узлах относительно базового узла:

Таким образом, минимальное число независимых переменных в уравнениях цепи равно либо числу звеньев, либо числу узлов минус 1, в зависимости от того, какое из этих чисел меньше.

При расчёте цепей чаще всего используются уравнения, записываемые исходя из законов Кирхгофа. Система состоит из У-1 уравнений по 1-му закону Кирхгофа (для всех узлов, кроме базового) и К уравнений по 2-му закону Кирхгофа для каждого независимого контура. Независимыми переменными в уравнениях Кирхгофа являются токи звеньев. Поскольку согласно формуле Эйлера для плоского графа число узлов, рёбер и независимых контуров связаны соотношением или то число уравнений Кирхгофа равно числу переменных, и система разрешима. Однако число уравнений в системе Кирхгофа избыточно. Одним из методов сокращения числа уравнений является метод узловых потенциалов. Переменными в системе уравнений являются У-1 узловых потенциалов. Уравнения записываются для всех узлов, кроме базового. Уравнения для контуров в системе отсутствуют.

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным нулю. Затем узлы нумеруются, после чего составляется система уравнений.

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов, примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Метод переменных состояния

Метод переменных состояния (называемый иначе методом пространственных состояния) представляет собой упорядоченный способ нахождения состояния системы в функции времени, использующий матричный метод решения системы дифференциальных уравнений первого порядка, записанных в форме Коши (в нормальной форме). Применительно к электрическим цепям под переменными состояниями понимают величины, определяющие энергетическое состояние цепи, т.е. токи через индуктивные элементы и напряжения на конденсаторах. Значения этих величин полагаем известными к началу процесса. Переменные состояния в обобщенном смысле назовем х. Так как это некоторые функции времени, то их можно обозначить x(t).

Метод переменных состояния основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния x¢(t) с матрицами самих переменных состояний x и внешних воздействий u, в качестве которых рассматриваются ЭДС и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин y с матрицами переменных состояния x и внешних воздействий u.

Определяя переменные состояния, отметим следующие их свойства:

В качестве переменных состояния в электрических цепях следует выбрать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т.е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т.е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях, то первое уравнение метода переменных состояния также можно представить в канонической форме, т.е. решенным относительно первых производных по времени этих величин. Однако, структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий u¢. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации в момент коммутации не изменяются скачком, т.е. одинаковы для моментов времени t=0+ и t=0-. Переменные состояния и потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений и . Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники. Пусть в системе n переменных состояния, m выходных величин и р источников воздействия. Тогда матрицу-столбец переменных состояния в n-мерном пространстве состояний, матрицу-столбец выходных величин, матрицу-столбец источников воздействий обозначим соответственно

(14)

Для электрических цепей можно составить матричные уравнения вида:

где [A], [B], [C], [D] - некоторые матрицы, определяемые структурой цепи и значениями ее параметров. Причем [A] - всегда квадратная матрица порядка n.

(15) - система n дифференциальных уравнений первого порядка (в общем случае взаимосвязанных), называемая уравнением переменных состояния в нормальной форме. Вспомогательные переменные х, х...х - переменные состояния, а [x] - вектор переменных состояния.(16) - выходное уравнение.

Преимущества

Решение таких систем широко известно в математике как в численном, так и в аналитическом виде.

Уравнения легко решаются на ЭВМ.

Как правило, число уравнений в системе (15) оказывается меньше, чем число уравнений, составленных МУП.

Метод может быть обобщен для решения нелинейных систем

Заключение

Польза от компьютерного моделирования по сравнению с натурным экспериментом:

это дешевле

это быстрее.

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем. В задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА (детерминированная, непрерывная, аналитическая). Методы решения математических задач можно разделить на 2 группы:

точные методы решения задач (ответ получается в виде формул);

численные методы решения задач (формулы нет, но можно построить много арифметических операций, которые приведут к решению).

Численные методы разрабатываются вычислительной математикой и особенно актуальны при применении ЭВМ. Ни те, ни другие методы обычно не дают точного решения, однако это не значит, что разум бессилен а, это всего лишь означает, что надо установить требуемую степень точности и решать проблему с заданной точностью.

Литература

1. Сегерлинд Л. «Применение метода конечных элементов» Перевод с английского Шестакова А.А. Москва 1979

Http://ru.wikipedia.org/wiki/Метод_классической_молекулярной_динамики

Е.М. Смирнов, Д.К. Зайцев «Метод конечных объемов в приложении к задачам гидрогазодинамики и теплообмена в областях сложной геометрии» Научно технические ведомости 2’ 2004

Http://ru.wikipedia.org/wiki/Метод_подвижных_клеточных_автоматов

Понятие «модель» возникло в процессе опытного изучения мира, а само слово в переводе с латинского означает мера, образ, способ. Первоначально модели активно использовались в строительстве, затем на моделях стали изучать течение водяных потоков, при строительстве плавательных средств, инженерных сооружений. Сегодня моделирование превращается в один из универсальных методов познания, применяемых во всех современных науках.

Научной основой моделирования служит теория аналогии. Основные виды качественной аналогии - химическая, физическая, кибернетическая. Например, физическая аналогия - это подобие при наличии физического аналога, а константы подобия - безразмерные величины, результат же исследования предполагает раскрытие физического смысла самих уравнений. Все эти виды объединяются понятием обобщенной аналогии - абстракцией, которая выражает особого рода соответствие между сопоставляемыми объектами, между моделью и прототипом.

Основным видом количественной аналогии является понятие математической аналогии. Это аналогия формы уравнений и аналогия соотношений между переменными в уравнениях оригинала и модели. Частные случаи математической аналогии - геометрическая (подобие пространственных пропорций частей объекта, подобие геометрических образов), временная (подобие функции времени, при котором константа подобия показывает, в каком соотношении к ней находятся такие параметры, как период, задержка).

Вместе с тем, следует четко усвоить, что аналогия - это не модель. Аналогия - это объективная, научная основа моделирования. А само моделирование является методологией эксперимента.

Моделирование - это метод исследования на модели, т.е. на аналогах (схемах, структурах, знаковых системах) определенных фрагментов действительности, которые называются оригиналами. Модель - это, прежде всего то, с чем сравнивают. Главное, чтобы между моделью и оригиналом было сходство в каких-то физических характеристиках, или в структуре, или в функциях. Существуют различные виды моделирования: предметное (прямое) и знаковое, а также информационное, компьютерное, математическое, математико-картографическое, молекулярное, цифровое, логическое, психолого-педагогическое, статистическое, экономико-математическое, эволюционное и другие. Такое разнообразие указывает на достаточно высокую степень эффективности моделирования в разных науках.

Предметным называется моделирование, в ходе которого исследование ведется на модели, воспроизводящей определенные физические, геометрические и прочие характеристики оригинала. Предметное моделирование используется как практический метод познания. При знаковом моделировании моделями служат схемы, чертежи, формулы, предложения естественного или искусственного языка. Поскольку действия со знаками есть одновременно действия с некоторыми мыслями, то всякое знаковое моделирование по своей сути является моделированием мысленным.


Исследование мысленных моделей связано с применением гипотетико-дедуктивного метода, потому что модель является некоторым возможным, предположительным (гипотетическим) вариантом оригинала, и этот вариант можно проверить с помощью вытекающих из него следствий.

Таким образом, моделирование является методом опосредованного оперирования объектом, в ходе которого исследуется непосредственно не сам интересующий нас объект, а некоторая промежуточная вспомогательная система (естественная или искусственная), которая:

Во-первых, находится в некотором объективном соответствии с познаваемым объектом;

Во-вторых, подобного рода система способна в ходе познания замещать на известных этапах и в определенных отношениях изучаемый объект;

В-третьих, система может давать в процессе ее исследования полезную информацию об интересующем нас объекте.

Рассмотрим, используя учебное пособие О.Е. Акимова, (Акимов О.Е. Естествознание: Курс лекций. - М.: ЮНИТИ-ДАНА, 2001. - 639с.) операцию моделирования. Обратимся к разделу динамики, где используют три типа модели - материальная точка, абсолютно твердое тело и сплошная среда.

Под материальной точкой понимают тело конечной массы, пространственные размеры и внутренняя структура которого не принимаются во внимание. Однако на практике чаще встречаются более сложные случаи, когда механическую систему нельзя представить в виде одной изолированной точки, так как требуется, например, учитывать вращательный моменты, который в свою очередь зависит от геометрических параметров тела и распределения масс внутри системы. В таком случае прибегают к модели абсолютно твердого тела, которая состоит из конечной совокупности жестко связанных материальных точек.

Изучение динамики абсолютно твердого (т.е. совершенно недеформируемого в процессе движения) тела начинается с рассмотрения геометрии масс. Затем производится анализ возникающих сил и, наконец, рассчитывается траектория движения всей механической системы. Подобные задачи возникают, например, при рассмотрении движения Луны относительно Земли, которое существенным образом зависит от движения Земли относительно Солнца, или вращения коленчатого вала двигателя внутреннего сгорания, которое зависит от сопротивления поршней.

Третья модель механической системы - сплошная среда - является естественным расширением модели твердого тела, когда условие абсолютной жесткости между материальными точками нарушается, а их число становится бесконечным. Таким образом, сплошной средой считают деформируемое твердое тело, жидкость, газ, т.е. три основные фазы вещества. Известно и четвертое состояние вещества - плазма, которая также описывается при помощи модели сплошной среды. Сплошная среда в реальных условиях состоит из большого числа частиц - молекул. Молекулы газа и жидкости находятся в непрерывном хаотическом движении.

Молекулярно-кинетическая теория ставит перед собой цель изучения как раз этой формы движения материи. При этом она пользуется статистическим методом, анализируя не движения отдельно взятых молекул, а целых их ансамблей. Отсюда происходит и другое название указанной теории - статистическая физика. Для нее, например, давление газа и температура жидкости есть уже интегральные характеристики движения большого числа материальных частиц, движущихся в абсолютной пустоте по случайным траекториям. Молекулярно-кинетическая теория стала основой современной атомной физики и физики элементарных частиц.

В 1950-х годах моделирование успешно стали применять в социально-экономических процессах (работы Дж. Форрестера по экономическому развитию локальных территорий и мировых экономических процессов), а впоследствии применительно к глобальным общественно-политическим и экологическим процессам, проблемам освоения ближнего и дальнего космоса.

Моделирование в истории науки

Моделирование издавна применялось в познании; еще античный мыс-литель Эмпедокл пытался объяснить функционирование дыхательной системы животных, используя в качестве модели принцип действия водя-ного сифона, а английский врач XVII в. У. Гарвей представлял работу серд-ца и движение крови в системе кровообращения в виде механической модели. С начала Нового времени (XVI в.) метод моделирования посте-пенно приобретает все большее распространение, проникая во все отрас-ли научного знания.

Осознание общенаучной значимости этого метода происходит в XX в. под влиянием успехов кибернетики,продемонстрировавшей возможности создания и изучения систем, являющихся функционально сходными,хотя и реализованных на разных материальных носителях. Активное обсуждение общеметодологической значимости моделирования началось со статьи Н. Винера и А. Розенблюта «Роль моделей в науке» (1946) — ученых, непо-средственно стоявших у истоков кибернетики. Период 1950-1970-х гг. в связи с расцветом кибернетики и использованием системного подходаозна-менован особенно интенсивной разработкой проблематики моделирования как в мировой, так и в отечественной научной и философской литературе.

Сейчас, хотя пик интереса исследователей к этой теме пройден, в фило-софии и методологии науки важное значение моделирования общепри-знано, а сам метод моделирования надежно занимает свое заслуженное место в научном познании. Термин «моделирование» сегодня ассоциируется математическими методами для решения научно-практических задач, когда вместо непосредственного манипулирования объектом изучают его математический «образ», решая с использованием компьютерных технологий сложные вычислительные задачи. Не круг тем, охватываемых методами моделирования, гораздо разнообраз-нее; например, использование деловых игр в социальных исследованиях, в педагогике и т.п. тоже является видом моделирования. Методы и приемы моделирования получили сегодня широкое распространение во многих областяхнаучно-практической деятельности.

Показания к моделированию

Метод моделирования применяется в тех ситуациях, когда по какой- либо причине исследователю предпочтительно заменить непосредственное изучение исходного объекта его моделью. Это ситуации, в которых прямое манипулирование с оригиналом либо крайне затруднительно, либо неэффективно, либо вообще невозможно.

Примерами ситуаций, в которых пока-зано применение моделирования, могут служить :

1) многие виды медико-биологических исследований, объектом которых должен служить человек, что недопустимо по этическим причинам;

2) технические испытания различных дорогостоящих объектов: судов, самолетов, зданий и т.п. (которые вполне могут быть заменены моде-лями-макетами, воспроизведением отдельных частей);

3) недоступные во времени или в пространстве объекты и процессы (уда-ленные космические тела, процессы далекого прошлого);

4) отсутствие возможностей изучить объект целиком (массовые явления, которые подлежат изучению лишь на выборочных примерах);

5) другие случаи подобного рода, когда вместо оригинала исследователь строит или подыскивает подходящую модель: лабораторных животных — вместо человека, крыло самолета в аэродинамической трубе — вместо целого самолета, репрезентативную выборку для социологического опроса — вместо опроса всего населения, математическую модель колебания цен в каком-то периоде исторического прошлого.

Этапы и структура моделирования

Процесс моделирования включает всебя следующие шаги:

1) построение модели;

2) изучение модели;

3) экстраполяцию — или перенос полученных данных на область знаний об исходном объекте.

На первом этапе при осознании невозможности или нецелесообразно-сти прямого изучения объекта создается его модель.Целью этого этапа является создание условий для полноценного замещенияоригинала объектом-посредником, воспроизводящим его необходимые параметры.

На втором этапе производится изучение самой модели, настолько детальное, насколько это требуется для решения конкретной познава-тельной задачи. Здесь исследователь может осуществлять наблюденияза поведением модели, проводить над ней эксперименты (модельный эк-сперимент), осуществлять измерение или описание ее характеристик. Это зависит от специфики самой модели и от исходной познаватель-ной задачи. Целью второго этапа является получение требуемой ин-формации о модели.

Необходимо отметить, что, хотя модель мы создаем (или выбираем) сами, подчиняя ее ряду условий, она обладает определенной самостоятельностью. В ней присутствует некий элемент неизвестности,поэтому модель надо действительно изучать, и она в должной мере заранее неизвестна. Метод моделирования потому и относится к эмпирическимметодам, что предполагает интерактивный режим работы с изучаемым явлением (в данном случае с моделью, а также в той или иной мере — и с оригиналом).

Третий этап (экстраполяционный) представляет собой возвращение к исходному объекту, т.е. интерпретацию полученных знаний о модели, оценку их приемлемости и, соответственно, непосредственное примене-ние их к оригиналу, позволяющее в случае успеха решить исходную по-знавательную задачу.

Классификация моделей

Назовем некоторые основания классификации моделей:

1) по субстрату — материальные (вещественные) и идеальные (концеп-туальные, мысленные);

2) по моделируемым аспектам — структурные, функциональные;

3) по виду сходства между оригиналом и моделью — физические, анало-говые, квазианалоговые.

Проблема сходства оригинала и модели

Для решения многих задач, в которых используется моделирование, требуется уточнить интуитивное понимание того, что модель похожа на оригинал. Знание точных взаимоотношений модели и оригинала позволяет на всех этапах моделирования действовать более адекватно: от этапа построениямодели с заданными характеристиками до экстраполяции,осуществляемой по строгим правилам.

В физико-технических науках для обозначения обобщенного отношения сходства модели и оригинала используется термин «подобие».В физике существует особая дисциплина — теория подобия; она обеспечивает концептуальную поддержку моделирования. В теории подобия разрабатываются методы, с помощью которых можно репрезентировать данные как зависимости между безразмерными величинами, т.е. в некотором нейтральном виде; тогда явления, которые описываются одинаковыми значениями безразмерных величин, являются подобны-мидруг другу.

Пользуясь этой теорией, исследователь может, изучая явление на какой-либо модели, переносить полученные результаты на совершенно иные явления, но характеризующиеся теми же значения-ми безразмерных величин. При точном моделировании оперируют и такими понятиями, как масштабы(отношения, устанавливающие условия перехода от модели к оригиналу), критерии подобия (крите-рии адекватного сходства модели и оригинала); выделяют также раз-личные виды подобия — абсолютное, полное, неполное, приближен-ное.

У истоков теории подобия стояли Галилей и Ньютон . Так, Галилей показал, что сходство механических систем базируется не просто на интуитивно понимаемом сходстве их по внешнему виду и т.п., а на определенных физических соотношениях. И. Ньютон, продолжая этот подход, сформулировал две теоремы подобия для механических систем.

Для обозначения еще более широкого отношения сходства между объек-тами, системами, процессами предлагают также использовать термин «изо-морфизм» — понятие, пришедшее из абстрактной алгебры. Две сравнивае-мые системы называются изоморфными,если каждому элементу одной системы взаимно однозначно соответствует элемент второй системы, а каж-дому отношению между элементами первой системы соответствует отноше-ние второй системы, имеющее такие же структурные свойства.

В контексте моделирования две системы называют изоморфными, если между ними мо-жет быть установлено взаимное соответствие по некоторым изучаемым свойствам. Например, у информационных процессов могут быть выделе-ны устойчивые общие черты, позволяющие им протекать сходным обра-зом в биологическом объекте, компьютере, социальной системе, тогда все эти объекты рассматриваются как изоморфныеотносительно протекания их информационных процессов.

Взаимное соответствие определенных аспектов двух систем может быть обнаружено и реализовано различными способами. Наиболее яр-ким случаем такого соответствия является изоморфизм структур. При моделировании этого сходства исследователь пытается воспроизвести структурные особенности одной системы на ином субстрате. В бионикедля нужд технических наук создаются искусственные аналоги объектов или процессов, обнаруженных в живой природе: например, ультразвуко-вая эхолокация имитирует соответствующие органы животных.

Струк-турное моделирование также широко используется в медицинских науках при протезировании органов. Другим вариантом соответствия является существенное сходство функции(поведения). Один и тот же эффект мо-жет быть реализован в системах с совершенно разными структурами: летательный аппарат может быть выполнен не обязательно на основе крыла, но и на основе пропеллера, баллона с легким газом, реактивного двигателя.

Логические аспекты этапа экстраполяции

Завершающим этапом моделирования является экстраполяция . В ко-нечном счете, именно экстраполяция оправдывает весь процесс работы с моделью. Экстраполяционный вывод как перенос информации с одного объекта на другой, сходный с ним, с логической стороны представляет собой заключение по аналогии. Однако в целом моделирование нельзя сводить лишь к логической операции вывода по аналогии, т.к. оно являет-ся сложным процессом, включающим в себя различные типы логического вывода. Положение дел здесь подобно тому, что имеет место в математике, которая является дедуктивной наукой, однако не может быть сведена к одному лишь дедуктивному выводу. Какие же процедуры лежат в осно-ве экстраполяционных выводов?

Следует помнить, что вывод по аналогии относится в логике к недедуктивным, т.е. неточным, приближенным рассуждениям. Поэтому час-то требуется применение более строгих методов, ведь методологиче-ским идеалом экстраполяции является достижение максимальной точностипри переходе от модели к оригиналу. В тех случаях, когда модельстроится по уточненным критериям соответствия оригиналу, экстраполяционные выводы основываются на специальных расчетах, а не просто на видимом сходстве. Строго говоря, такие выводы, осно-ванные на точных критериях подобия, не могут расцениваться как приблизительные, а являются уже дедуктивным процессом.

Существует один тонкий вопрос, касающийся логической стороны отношений модели и оригинала. Следует обратить внимание на то, что в общем случаеоригинал и его модель относятся к разнымклассам объек-тов, т.е. вполне могут быть совершенно разноплановыми явлениями. Имен-но поэтому между ними могут быть определены отношения только аналогии, но не логические отношения более тесного родства — отношения включения элемента в класс, части и целого, тождества и т.п. В противном случае будет утрачена специфика самого модельногосоотношения, и оно примет универ-сальный и одновременно бессодержательный характер.

Тогда окажется, что модельное соотношение будет приложимо ко всему, ведь и часть можно будет считать моделью целого, и элемент — моделью множества. отношение между экспериментоми классом реальных ситуаций, на которые он должен быть экстраполирован (с обеспечением внешней валидности), не является модельным,т.к. отношение между явлением, выделяе-мым в чистом виде в данном эксперименте, и другими явлениями этой же предметной области, является отношением тождества,а не аналогии.

Заметим также, что понимание логического отношения оригинала и модели как отношения аналогиине должно вызывать затруднений в по-нимании статуса статистики. Хотя при статистическом исследовании и производится случайная выборка из самой же генеральной совокупно-сти объектов, полученная выборка является именно модельюгенеральной совокупности.

Ведь в общем случае изучаемые свойства выборки могут существенно отличаться от свойств оставшейся части (или от свойств целого); исследователь не может рассчитывать на их тождество, целью статистического подхода как раз и является создание условий, макси-мально приближающих выборку к генеральной совокупности. Поэтому статистическое исследование тоже представляет собой вид моделирования;для построения статистической модели, как и для всякой другой, необходимы определенные допущения,идеализирующие ситуацию и вы-полняющиеся лишь приближенно, и определенные условия,позволяющие повысить достоверность экстраполяционных выводов.

Итак, экстраполяциябазируется на выводе по аналогии, но с использо-ванием всех возможностей для повышения его точности.

Сложность, неисчерпаемость, бесконечность объекта педагогического исследования заставляет для проникновения в его суть, в его внутреннюю структуру и динамику искать более простые аналоги для исследования. Более простой по структуре и доступный изучению объект становится моделью более сложного объекта, именуемого прототипом (оригиналом). Открывается возможность переноса информации, добытой при использовании модели, по аналогии на прототип. В этом сущность одного из методов теоретического уровня - метода моделирования .

Моделирование - метод научного исследования явлений, процессов, объектов, устройств или систем (обобщенно - объектов исследований), основанный на построении и изучении моделей с целью получения новых знаний, совершенствования характеристик объектов исследований или управления ими.

Это такой общенаучный метод исследования, при котором изучается не сам объект познания, а его изображение в виде так называемой модели, но результат исследования переносится с модели на объект (А. А. Кыве- рялг). Один из способов познания, когда изучение того или иного объекта производится с помощью изучения другого объекта, в каком-то отношении подобного первому, с последующим переносом на первый объект результатов изучения второго. Этот второй объект и называют моделью первого. Таким образом, моделирование есть процесс построения модели или исследование объектов познания на их моделях.

Слово «модель» (от лат. modulus") прочно вошло в повседневный язык. Модель - это мера, образец, норма. Именно так мы называем мысленный (абстрактный), знаковый (математический, словесноописательный, графический) или материальный образ оригинала, т.е. модель - это «заместитель» оригинала в познании или на практике.

Моделировать можно внешний вид объекта (детские модели «взрослых» автомобилей); функции (математическая модель движения летального аппарата); структуру и логику объектов (модель гимназии) и т.п.

При изучении сложных явлений, процессов, объектов не удается учесть полную совокупность всех элементов и связей, определяющих их свойства. Модель можно представить как материальный объект или образ (мысленный или условный: гипотеза, идея, абстракция, изображение, описание, схема, формула, чертеж, план, блок-схема алгоритма и т.п.), который упрощенно отображает самые существенные свойства объекта исследования.

Таким образом, любая модель всегда проще реального объекта и отображает лишь часть его самых существенных черт, основных элементов и связей. По этой причине для одного объекта исследования существует множество различных моделей. Вид модели зависит от выбранной цели моделирования.

Моделирование предполагает построение и изучение моделей реально существующих предметов, явлений, объектов с целью:

  • - определения или улучшения их характеристик;
  • - рационализации способов их построения;
  • - управления и прогнозирования.

При помощи модели можно устанавливать и описывать компоненты изучаемого объекта и взаимосвязь между ними, давать сведения об управлении объекта и прогнозировать его развитие.

Гносеологическая сущность научных моделей в том, что они позволяют системно и наглядно выразить знание о предмете, его функциях, параметрах и пр. Основное назначение модели - объяснить совокупность данных, относящихся к предмету познания.

Модель в чем-то схематизирует явления действительности, отвлекает от каких-то конкретных свойств, поэтому она всегда применима для описания только отдельных сторон конкретных явлений при определенных условиях. Одно и то же педагогическое явление можно представить с помощью нескольких моделей.

Как известно, модель есть созданная или выбранная исследователем система, воспроизводящая существенные для данной цели познания стороны (элементы, свойства, отношения, параметры) изучаемого объекта и в силу этого находящаяся с ним в таком отношении замещения и сходства (в частности, изоморфизма), что исследование ее служит опосредованным способом получения знания об этом объекте (В. А. Штофф).

Существуют разные классификации моделей. Л. М. Фридман , подчеркивая, что модели строятся или выбираются человеком с определенной целью, выделяет:

  • 1) модель-заместитель, т.е. замена оригинала в некотором мысленном (воображаемом) или реальном действии (процессе), исходя из того, что модель более удобна для этого действия в данных условиях;
  • 2) модель-представление, т.е. создание представления об объекте с помощью модели;
  • 3) модель-интерпретация, т.е. истолкование объекта в виде модели;
  • 4) модель исследовательская, т.е. исследование объекта с помощью модели.

Для того чтобы модель подходила для указанных целей, она должна обладать соответствующими признаками. Л. М. Фридман подчеркивает, что в большинстве случаев модель обладает не одним признаком, а несколькими, поэтому она может быть пригодна для нескольких целей. Это означает, что модель-заместитель может быть одновременно и моделью-представлением и исследовательской моделью. Тем не менее вид модели определяется именно той целью, для которой она была первоначально построена.

Модели классифицируются также следующим образом:

  • а) понятийная, отражающая знания об объекте в форме определенной совокупности взаимосвязанных положений, утверждений, выводов;
  • б) образная, воспроизводящая основные стороны, элементы, связи, отношения объекта в форме описаний, фото- и киномоделей, графиков, схем;
  • в) знаково-символическая (математическая), отражающая существенные внутренние и внешние связи и отношения оригинала в виде формулы;
  • г) физическая, отображающая структуру и функции объекта в пространстве.

Каждая из них имеет как достоинства, так и недостатки. Каждая дает возможность в каком-то своеобразном ракурсе увидеть исследуемый объект. Поэтому целесообразно сочетание их в процессе моделирования, использование и словесных описаний, и рисунков, и формул, которые в своей совокупности могут отразить с достаточной полнотой даже весьма сложные системы.

Также различают модели воображаемых и реальных объектов; модели будущих событий или процессов (прогнозирующие модели) и модели совершенных событий (модели описания).

В педагогической науке часто используют модели статические и динамические. Статическая модель характеризует объект в конкретный момент времени, динамическая модель показывает, как изменяется состояние объекта исследования с изменением времени. Статическая модель педагогического процесса чаще всего характеризуется с учетом следующих компонентов:

  • - концептуально-целевой (включающий цели, задачи, идеи, принципы исследуемого процесса);
  • - содержательный (виды, сферы, направления деятельности);
  • - процессуальный или операционно-деятельностный (технологии, формы, методы, средства);
  • - аналитико-результативный (критерии и показатели развития исследуемого процесса, методики и способы их замера, средства аналитической деятельности).

Динамическая модель может отражать этапы развития исследуемого процесса.

«Особым видом моделирования, основанного на абстрагировании, считают мысленный эксперимент. В таком эксперименте исследователь на основе теоретических знаний об объективном мире и эмпирических данных создает идеальные объекты, соотносит их в определенной динамической модели, имитируя мысленно то движение и те ситуации, которые могли бы иметь место в реальном экспериментировании. При этом идеальные модели и объекты помогают в “чистом” виде выявить наиболее важные для познающего, существенные связи и отношения, проиграть проектируемые ситуации, отсеять неэффективные или слишком рискованные варианты» .

В экспериментальной работе целесообразно провести структурнологическое моделирование эксперимента, мысленно пройдя весь предстоящий путь, описав предполагаемые результаты и затруднения, прогнозируя риски и отсроченные позитивные и негативные моменты, сопутствующие эксперименту. Такой подход важен для управления экспериментом. Существует понятие «идеальная модель», смысл которого заключается не в том, что автор создал нечто совершенное, никому не доступное, а в том, что автор постарался в модели исключить все негативные моменты, предусмотреть все проблемные аспекты, синтезировать новейшие теории и практики, т.е. создал «свой идеал» .

Моделирование рассматривают как особую деятельность по построению, конструированию моделей с определенной целью. Она имеет внешнее практическое содержание и внутреннюю психическую сущность. Как психическая деятельность моделирование включает психические процессы: восприятие, представление, память, воображение, мышление . Следовательно, при моделировании наряду с оригиналом и моделью рассматривается еще и субъект (человек). Именно от его интеллектуальной деятельности зависит отношение между оригиналом и моделью.

Во всех случаях между моделью и моделируемым объектом (оригиналом) есть определенное отношение - модельное отношение. Это отношение показывает, в каком смысле оригинал и его модель подобны, аналогичны. Модель и оригинал всегда отличны, но что-то или в каком-то отношении аналогично. Обнаруженный в модели некоторый признак (свойство) присущ и оригиналу.

Модель есть средство познания, основанное на аналогии, но аналогия не тождество. Несовпадение модели и оригинала наблюдается главным образом в том, что модель, воспроизводя структуру оригинала, упрощает его, отвлекаясь от несущественного.

Каждый характеризующий явление фактор должен получить в модели точное определение, которое должно быть стабильным в течение всего рассуждения.

Модели всегда строятся или выбираются человеком для определенной цели, поэтому разные люди могут построить разные модели для одного и того же объекта.

Таким образом, модель - это результат познания (промежуточный этап построения теории объекта). Это посредник между субъектом и объектом. Процесс моделирования включает три элемента: субъект (исследователь) и объект исследования, модель, определяющую или отражающую отношения познающего субъекта и познаваемого объекта.

Таким образом, модель отражает предмет не непосредственно, а через совокупность целенаправленных действий субъекта:

  • - конструирование модели;
  • - экспериментальный и (или) теоретический анализ модели;
  • - сопоставление результатов анализа с характеристиками оригинала;
  • - обнаружение расхождений между ними;
  • - корректировка модели;
  • - интерпретация полученной информации, объяснение обнаруженных свойств, связей;
  • - практическая проверка результатов моделирования.

В обобщенном виде процесс моделирования можно условно представить четырьмя этапами.

Первый этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. При этом изучение одних сторон моделируемого объекта осуществляется ценой отказа от других.

Второй этап характеризуется тем, что модель выступает как самостоятельный объект исследования, когда одной из форм такого исследования является проведение «модельных» экспериментов. При этом изменяются условия применения модели и фиксируются полученные данные.

На третьем этапе осуществляется перенос знаний с модели на оригинал, осуществляется корректировка знаний о модели с учетом свойств оригинала.

Четвертый этап - это практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им (Б. А. Глинский, Е. Н. Грязнов, Е. Н. Никитин, Б. С. Дынин).

Моделирование - цикличный процесс, это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. Знания об исследуемом объекте расширяются, уточняются, дополняются и углубляются при каждом новом цикле.

Любая созданная человеком модель относительно завершена. Чем дальше и глубже осуществляется поиск, тем совершенней будет модель. В результате исследования появляются модель первого порядка, модель второго порядка... модель N-ro порядка. Первая модель создается на основе интуиции, наблюдений, первичных представлений исследователя; вторая модель - в результате проведения пилотажного исследования (анкета, опрос, тестирование, беседа со специалистами и др.); третья модель - по итогам экспериментальной работы; четвертая - в процессе апробации модели в новых условиях. Каждая последующая модель более точно отражает существенные связи объекта-оригинала.

В последние годы моделирование прочно вошло в образовательную практику. Расцвет инновационной деятельности в конце XX в. породил весьма широкий спектр моделей образовательных процессов, концептуальных моделей и т.п. Сегодня можно говорить о наличии в образовании многих моделей, которые представляют собой понимание автором того или иного развития какого-либо объекта. На основе этой теоретической модели создается действующая модель, реально влияющая на образовательную практику . Например, модель предпрофиль- ной подготовки учащихся (Л. Н. Серебренников).

Моделью может стать и реально существующая (зародившаяся и развивающаяся) образовательная практика, которая возникла не на основе теории, а на базе опыта, здоровой интуиции и разума. Затем она приобрела яркое, качественно выраженное своеобразие: теоретически описанная, она стала моделью, способной к переносу , например, концепция и модель обучения в разновозрастных группах (Л. В. Байбородова).

Часто моделирование педагогических систем ограничивается созданием концептуальной модели объекта, которая не может использоваться для прогнозирования их развития. В такой модели содержится ряд предположений, требующих экспериментальной проверки, являющейся неотъемлемой частью любого педагогического исследования. Они должны раскрывать конструктивные начала для преобразования практики и прогнозирования оптимальных путей развития педагогической системы.

Как отмечалось, моделирование служит также задаче конструирования нового, не существующего еще в практике. «Исследователь, изучив характерные черты реальных процессов и их тенденций, ищет на основе ключевой идеи их новые сочетания, делает их мысленную перекомпоновку, т.е. моделирует требующееся состояние изучаемой системы. Создаются модели-гипотезы, вскрывающие механизмы и между компонентами изучаемого, и на этой основе строятся рекомендации и выводы, проверяемые затем на практике. Таковы, в частности, и проектируемые модели новых типов образовательных заведений: дифференцированной школы с разноуровневым обучением, гимназии, лицея, колледжа, микрорайонного социального центра и др. В каждой из этих моделей своеобразно синтезирован опыт прошлого, заимствованные из известных образцов черты настоящего, предположения об эффективных нововведениях. Необходимо только помнить, что любая модель всегда беднее оригинала. Она отражает лишь его отдельные стороны и связи, так как теоретическое моделирование всегда включает абстрагирование» .

Эффективность моделирования определяется после проверки модели. Если применение модели для указанной цели оказалось, по мнению исследователя, успешным, соответствующим определенным критериям, то выбор модели был успешным.

Хотя модель имеет много положительных моментов, несомненна ограниченность модельных представлений. Любая модель - это лишь изобретение автора; она, конечно, улучшает наше понимание тех или иных процессов, но, безусловно, ограничена, не исчерпывает всю полноту процесса, явления, объекта .

Чтобы избежать ошибки в использовании метода моделирования, исследователю необходимо учитывать следующее:

  • - моделирование - не самоцель, оно должно способствовать исследованию проблемы;
  • - этот метод сочетается с другими методами исследования;
  • - эффективность использования метода зависит от многих психических и мыслительных процессов исследователя;
  • - никогда нельзя быть уверенным в адекватности модели, не существует строгого метода доказательства существования отношения гомоморфизма (обычно гомоморфизм обосновывается индуктивно, что чревато ошибками);
  • - объект моделирования может быть подвержен изменениям, модель, успешно работавшая в прошлом, не обязательно окажется полезной в настоящем;
  • - границы применимости модели, как правило, неизвестны, результаты одних модельных экспериментов могут быть полезными, других - нет.

Современное педагогическое исследование трудно провести, не используя метод моделирования. Подлинно научный характер исследование приобретает в том случае, если педагог на основе результатов изучения строит особый объект обобщенного и абстрактного представления, схему изучаемого явления (модель явления).

Вопросы для самопроверки и обсуждения

  • 1. В каких случаях используется метод моделирования?
  • 2. Назовите классификации моделей. Какие из моделей вы будете использовать в своем исследовании?
  • 3. Каковы этапы моделирования?
  • 4. Какие вспомогательные методы исследования вы будете использовать при моделировании?
  • 5. Какова общая структура модели педагогического процесса?
  • 6. Какие ошибки могут быть допущены при использовании метода моделирования и как их избежать?

Практические задания

  • 1. В материале для практического задания представлены схемы «Развитие самоуправления в детском коллективе» и «Модель развития эстетического отношения к действительности у детей в театральном объединении» (М. И. Рожков) (схема 1.6). Можно ли данные схемы рассматривать как модели? Почему? Охарактеризуйте их, используя материал главы.
  • 2. Представьте исследуемый вами процесс, явление с помощью нескольких моделей.
  • Чечелъ И. Д., Новикова Т. Г. Теория и практика организации экспериментальнойработы в общеобразовательных учреждениях. С. 49.

Основной метод исследования систем для принятия управленческих решений - метод моделирования, т.е, способ теоретического анализа и практического действия, направленный на разработку и использование моделей.

Прежде чем перейти к рассмотрению понятия модели, этапов, особенностей и проблем моделирования, остановимся на объекте моделирования, а именно на понятии «система».

Сущность и свойства социально-экономических систем как объекта моделирования. Центральное понятие кибернетики - понятие «система». Единого определения этого понятия нет; возможна такая формулировка: система - комплекс взаимосвязанных элементов вместе с отношениями между элементами и между их атрибутами. Исследуемое множество элементов можно рассматривать как систему, если выявлены следующие четыре признака :

■ целостность системы, т.е. принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов;

■ наличие цели и критерия исследования данного множества элементов;

■ наличие более крупной, внешней по отношению к данной системы, называемой «средой»;

■ возможность выделения в данной системе взаимосвязанных частей (подсистем).

Под социально-экономической системой понимается сложная веро­ятностная динамическая система, охватывающая процессы производства, обмена, распределения и потребления материальных и других благ.

Социально-экономические системы относятся, как правило, к так называемым сложным системам. Сложные системы в экономике обладают рядом свойств, которые необходимо учитывать при их моделировании, иначе невозможно говорить об адекватности построенной экономической модели, т.е. ее соответствии моделируемому объекту или процессу .

Свойства сложных систем, которые необходимо учитывать при моделировании:

■ эмерджентность как проявление в наиболее яркой форме свойства целостности системы, т.е. наличие у экономической системы таких свойств, которые не присущи ни одному из составляющих систему элементов, взятому в отдельности. Эмерджентность есть результат возникновения между элементами системы так называемых синергических связей, которые обеспечивают увеличение общего эффекта до величины, большей, чем сумма эффектов элементов системы, действующих независимо. Поэтому социально-экономические системы необходимо исследовать и моделировать в целом;

■ массовый характер экономических явлений и процессов - закономерности экономических процессов не обнаруживаются на основании небольшого числа наблюдений, поэтому моделирование в экономике должно опираться на массовые наблюдения;

■ динамичность экономических процессов, заключающаяся в из­менении параметров и структуры экономических систем под влиянием среды (внешних факторов);

■ случайность и неопределенность в развитии экономических явлений, поэтому экономические явления и процессы носят в основном вероятностный характер и для их изучения необходимо применение экономико-математических моделей на базе теории вероятностей и математической статистики;

■ невозможность изолировать протекающие в экономических системах явления и процессы от окружающей среды, чтобы наблюдать и исследовать их в чистом виде;

■ активная реакция на появляющиеся новые факторы, способность социально-экономических систем к активным, не всегда предсказуемым действиям в зависимости от отношения системы к этим факторам, способам и методам их воздействия.

Выделенные свойства социально-экономических систем, естественно, осложняют процесс их моделирования, однако эти свойства следует постоянно иметь в виду при рассмотрении различных аспектов эконо­мико-математического моделирования, начиная с выбора типа модели и кончая вопросами практического использования результатов моделирования.

Основной метод исследования систем - метод моделирования. Остановимся подробнее на понятии, классификации моделей, процессе моделирования.

Понятие модели, причины использования моделей. По определению Шеннона: «Модель - это представление объекта, системы или идеи в некоторой форме, отличной от самой целостности» .

Модель - это образ реального объекта (процесса) в материальной или идеальной форме (описанный знаковыми средствами или на каком-либо языке), отражающий существенные свойства моделируемого объекта (процесса) и замещающий его в ходе исследования и управления .

Главной характеристикой модели можно считать упрощение реаль­ной жизненной ситуации, к которой она относится. Поскольку форма модели менее сложна, а не относящиеся к делу данные, затуманивающие проблему в реальной жизни, устраняются, модель зачастую повышает способность руководителя к пониманию и разрешению встающих перед ним проблем. Модель также помогает руководителю совместить свой опыт и способность к суждению с опытом и суждениями экспертов.

Существует ряд. причин, обусловливающих использование модели вместо попыток прямого взаимодействия с реальным миром .

Сложность организационных ситуаций. Как все школы управления, наука управления стремится быть полезной в разрешении организационных проблем реального мира. Может показаться странным, что воз­можности человека повышаются при взаимодействии с реальностью с помощью ее модели. Но это так, поскольку реальный мир организации исключительно сложен и фактическое число переменных, относящихся к конкретной проблеме, значительно превосходит возможности любого человека, и постичь его можно, лишь упростив реальный мир с помощью моделирования.

Невозможность проведения экспериментов. Встречается множество управленческих ситуаций, в которых необходимо опробовать и экспе­риментально проверить альтернативные варианты решения проблемы. Конечно, руководители фирмы были бы не правы, если бы вложили миллионы долларов в новое изделие, не установив экспериментально, что результат его появления на рынке будет таким, как намечено, и, вероятно, оно будет принято потребителями. Определенные эксперименты в условиях реального мира могут и должны иметь место. При проектировании сложной, высокотехнологичной продукции должен изготавливаться образец, затем проверяться в реальных условиях, и только потом возможно его полномасштабное производство. Но прямое экспериментирование такого типа дорого стоит и требует времени. Здесь на помощь приходят модели.

Кроме того, существуют бесчисленные критические ситуации, когда требуется принять решение, но нельзя экспериментировать в реальной жизни. К примеру, когда фирма «Фольксваген» решила построить производственное предприятие в США, ей пришлось выбирать место с достаточным обеспечением рабочей силой, благоприятными условиями налогообложения и экономически подходящее с точки зрения приемки необходимых материалов и отгрузки готовых автомобилей. Ей пришлось затем определять последовательность сборки многих тысяч деталей модели «Рэббит», выяснять, какие детали завод мог бы производить сам, а какие должны быть куплены, устанавливать необходимые уровни запасов каждой детали. Ясно, что фирма не могла решить эти проблемы, построив в порядке эксперимента в каждом возможном месте по заводу, да еще и по нескольким проектам .

Ориентация управления на будущее. Невозможно наблюдать явление, которое еще не существует и, может быть, никогда не будет существовать. Однако многие руководители стремятся рассматривать только реальное и осязаемое, и это в конечном счете должно выразиться в их обращении к чему-то видимому. Моделирование -единственный к настоящему времени систематизированный способ увидеть варианты будущего и определить потенциальные последствия альтернативных решений, что позволяет их объективно сравнивать.

Модели науки управления в наибольшей мере приспособлены к этим целям и как мощное аналитическое средство позволяют преодолевать множество проблем, связанных с принятием решений в сложных ситуациях.

Типы моделей.В настоящее время существует множество используемых современными организациями моделей, а также задач, для решения которых они наиболее пригодны, однако можно выделить три базовых типа моделей. Речь идет о физических, аналоговых и математических моделях .

Физическая модель представляет то, что исследуется с помощью уве­личенного или уменьшенного описания объекта или системы.

Примеры физической модели - синька чертежа завода, его уменьшенная фактическая модель, уменьшенный в определенном масштабе чертеж проектировщика. Такая физическая модель упрощает визуальное восприятие и помогает установить, сможет ли конкретное оборудо­вание физически разместиться в пределах отведенного для него места, а также разрешить сопряженные проблемы, например размещение дверей, ускоряющее движение людей и материалов.

Автомобильные и авиационные предприятия всегда изготавливают физические уменьшенные копии новых средств передвижения, чтобы проверить определенные характеристики, например аэродинамическое сопротивление. Будучи точной копией, модель должна вести себя аналогично разрабатываемому новому автомобилю или самолету, но при этом ее стоимость много меньше настоящего. Подобным образом строительная компания всегда строит миниатюрную модель, прежде чем начать строительство производственного или административного корпуса или склада.

Аналоговая модель представляет исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой. График, иллюстрирующий соотношения между объемом производства и издержками, - это аналоговая модель. График показывает, как уровень производства влияет на издержки.

Другой пример аналоговой модели - организационная схема. Выстраивая ее, руководство в состоянии легко представить себе цепи прохождения команд и формальную зависимость между индивидами и деятельностью. Такая аналоговая модель явно более простой и эффективный способ восприятия и определения сложных взаимосвязей структуры крупной организации, чем, скажем, составление перечня взаимосвязей всех работников.

В математической модели , называемой также символической, ис­пользуются символы для описания свойств или характеристик объекта или события. Пример математической модели и ее аналитической силы как средства, помогающего нам понимать исключительно сложные проблемы, - известная формула Эйнштейна Е = тс 2 . Если бы Эйнштейн не смог построить эту математическую модель, в которой символы заменяют реальность, маловероятно, чтобы у физиков появилась даже отдаленная идея о взаимосвязи материи и энергии.

Задачи экономико-математического моделирования. Практические задачи экономико-математического моделирования таковы:

■ анализ экономических объектов и процессов;

■ экономическое прогнозирование, предвидение развития экономических процессов;

■ выработка управленческих решений на всех уровнях хозяйственной иерархии.

Следует, однако, иметь в виду, что далеко не во всех случаях данные, полученные в результате экономико-математического моделирования, могут использоваться непосредственно как готовые управленческие решения. Они скорее могут быть рассмотрены как «консультирующие» средства. Принятие управленческих решений остается за человеком. Таким образом, экономико-математическое моделирование лишь один из компонентов (пусть очень важный) в человеко-машинных системах планирования и управления экономическими системами.

Процесс построения модели. Построение модели - это процесс, имеющий определенные основные этапы .

Постановка задачи. Первый и наиболее важный этап построения модели, способный обеспечить правильное решение управленческой проблемы, состоит в постановке задачи. Правильное использование математики или компьютера не принесет никакой пользы, если сама проблема не будет точно диагностирована. Как заметил К. Э. Шеннон: «Альберт Эйнштейн однажды сказал, что правильная постановка задачи важнее даже, чем ее решение. Для нахождения приемлемого или оптимального решения задачи нужно знать, в чем она состоит. Как ни просто и прозрачно данное утверждение, чересчур многие специалисты в науке управления игнорируют очевидное. Миллионы долларов расходуются ежегодно на поиск элегантных и глубокомысленных ответов на неверно поставленные вопросы».

Из того только, что руководитель осведомлен о наличии проблемы как таковой, вовсе не следует факт идентификации истинной проблемы. Руководитель обязан уметь отличать симптомы от причин. Рассмотрим для примера фармацевтическую компанию, получавшую множество жалоб от аптек на задержки с выполнением их заказов. Истинная проблема была, как оказалось, не в самой задержке. Изучение вопроса показало, что заказы задерживаются из-за производственных затруднений на трех химических предприятиях фирмы, вызванных нехваткой исходных химических реагентов и запасных частей к оборудованию, что в свою очередь было обусловлено некачественным прогнозированием потребности в материалах и запасных частях.

Построение модели. После правильной постановки задачи следующий этап процесса - построение модели. Разработчик должен определить главную цель модели, а также какие выходные нормативы или информацию предполагается получить, используя модель, чтобы помочь руководству разрешить стоящую перед ним проблему. Если продолжить приведенный выше пример, нужная выходная информация должна представлять точные нормативы времени и количества подлежащих заказу исходных материалов и запасных частей. В дополнение к постановке главных целей специалист по науке управ­ления должен определить, какая информация требуется для постро­ения модели, удовлетворяющей этим целям и выдающей на выходе нужные сведения. В нашем случае необходимой информацией будет точный прогноз потребности по каждому исходному реагенту, сведения о характере закупаемых материалов для каждого вида продукции, ожидаемой долговечности деталей оборудования, сроке службы каждой детали и т.п.

Может случиться, что эта необходимая информация разбросана по многим источникам.

К другим факторам, требующим учета при построении модели, следует отнести расходы и реакцию людей. Модель, которая стоит больше, чем вся задача, требующая решения с помощью модели, конечно, не внесет никакого вклада в достижение целей организации. Подобным образом, излишне сложная модель может быть воспринята конечными пользователями как угроза и отвергнута ими.

Таким образом, для построения эффективной модели руководителям и специалистам по науке управления следует работать вместе, взаимно увязывая потребности каждой стороны.

Проверка модели на достоверность. После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить, всели существенные компоненты реальной ситуации встроены в модель. Это, конечно, может оказаться непростым делом. Проверка многих моделей управления показала, что они несовершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средства оказания помощи руководителю в принятии хорошего решения. Однако модель не должна быть сложной в использовании.

Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью, действительно помогает руководству решить проблему.

Продолжим наш пример. Если модель для фармацевтической фирмы действительно снабдила руководство достоверной информацией о том, как часто и в каких количествах следует заказывать материалы и запасные части, ее можно считать полезной, поскольку выходная информация позволит руководству принять эффективные корректирующие меры в отношении задержек поставок.

Хороший способ проверки модели заключается в опробовании ее на ситуации из прошлого. Фармацевтическая фирма могла бы приложить свою модель к разрешению проблемы запасов за последние три года. Если модель точна, решение проблемы запасов с использованием конкретных количественных и временных показателей должно выявить конкретные причины, приведшие к задержкам. Руководство могло бы также определить, смогла ли полученная на модели информация (если бы ее удалось получить) помочь в разрешении производственных трудностей и ликвидации задержек.

Применение модели. После проверки на достоверность модель готова к использованию. Это кажется очевидным, но зачастую этот этап оказывается одним из самых тревожных моментов построения модели. Согласно обследованию отделов, анализирующих операции на корпоративном уровне, лишь около 60 % моделей науки управления были использованы в полной или почти полной мере. В других обследованиях также установлено, что финансовые руководители американских корпораций и западно-европейские управляющие маркетингом недостаточно широко используют модели для принятия решений. Основная причина недоиспользования моделей руководителями, возможно, заключается в том, что они их опасаются или не понимают.

Если модели науки управления создаются специалистами штабных служб (а так обычно и бывает), линейные руководители, для которых они предназначены, должны принимать участие в постановке задачи и определении требований по информации, получаемой благодаря модели. Согласно исследованиям, когда это имеет место, применение моделей увеличивается на 50 %. Кроме того, руководителей следует научить использовать модели, объяснив среди прочего, как модель функционирует, каковы ее потенциальные возможности и ограничения.

Обновление модели. Даже если применение модели оказалось успешным, почти наверняка она потребует обновления. Руководство может обнаружить, что форма выходных данных неясна или желательны дополнительные данные. Если цели организации изменяются таким образом, что это влияет на критерии принятия решений, модель необходимо соответствующим образом модифицировать. Аналогичным образом, изменение во внешнем окружении, например появление новых потребителей, поставщиков или технологии, может обесценить до­пущения и исходную информацию, на которых основывалась модель при построении.

Этапы процесса экономико-математического моделирования. Перейдем теперь непосредственно к процессу экономико-математического моделирования, т.е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования, поэтому целесообразно более детально проанализировать последовательность и содержание его этапов .

Постановка экономической проблемы и ее качественный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

Построение математической модели. Это этап формализации эконо­мической проблемы, т.е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Процесс построения модели проходит в свою очередь несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей. При этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются агрегированно и приближенно.

Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре.

Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решения. В частности, важный момент - доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы

тенденции их изменения и т.д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В таких случаях переходят к численным методам исследования.

Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации. Кроме того, надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов.

В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

Численное решение. Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительную трудность составляет большая размерность экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение пове­дения модели при различных условиях возможно проводить благодаря быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей - единственно возможное.

Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели, поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных. Другими словами, должны быть произведены верификация (проверка правильности структуры модели) и ее валидация (проверка соответствия данных, полученных на основе модели, реальному процессу).

Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели. В этом случае исходная постановка задачи должна быть скорректирована.

По степени агрегирования объектов моделирования модели делятся на макроэкономические и микроэкономические, хотя между ними и нет четкого разграничения. К первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как мик­роэкономические модели связаны, как правило, с такими звеньями эко­номики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения, выделяют:

■ балансовые модели, выражающие требование соответствия наличия ресурсов и их использования;

■ трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей;

■ оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления;

■ имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов, и др.

По типу информации, используемой в модели, экономико-математические модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и ди­намические, описывающие экономические системы в развитии.

По учету фактора неопределенности модели делятся на детермини­рованные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от дей­ствия случайного фактора.

По типу математического аппарата, используемого в модели, т.е. по характеристике математических объектов, включенных в модель, могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.

По типу подхода к изучаемым социально-экономическим системам вы­деляют дескриптивные и нормативные модели. При дескриптивном

(описательном) подходе получают модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений. В качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а тем, как она должна быть устроена и как должна действовать согласно определенным критериям.

Проблемы моделирования. Как все средства и методы, модели науки управления в случае их применения могут привести к ошибкам. Эффек­тивность модели иногда снижается действием ряда потенциальных по­грешностей.

Недостоверные исходные допущения. Любая модель опирается на не-которые исходные допущения, или предпосылки. Это могут быть под­дающиеся оценке предпосылки, например то, что расходы на рабочую силу в следующие шесть месяцев составят 200 тыс. долл. Такие предположения можно объективно проверить и просчитать. Вероятность их точности будет высока. Некоторые предпосылки не поддаются оценке и не могут быть объективно проверены. Предположение о росте сбыта в будущем году на 10 % - пример допущения, не поддающегося проверке. Никто не знает наверняка, произойдет ли это действительно. Поскольку такие предпосылки - основа модели, точность последней зависит от точности предпосылок. Модель нельзя использовать для прогнозирования, например, потребности в запасах, если неточны прогнозы сбыта на предстоящий период.

В дополнение к допущениям по поводу компонентов модели руководитель формулирует предпосылки относительно взаимосвязей внутри нее. К примеру, модель, предназначенная помочь решить, сколько галлонов краски разных типов следует производить, должна, вероятно, включать допущение относительно зависимости между продажной ценой и прибылью, а также стоимостью материалов и рабочей силы. Точность модели зависит также от точности этих взаимосвязей.

Информационные ограничения. Основная причина недостоверности предпосылок и других затруднений - ограниченные возможности в получении нужной информации, которые влияют и на построение, и на использование моделей. Точность модели определяется точностью информации по проблеме. Если ситуация исключительно сложна, специалист по науке управления может быть не в состоянии получить информацию по всем релевантным факторам или встроить ее в модель. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но это может быть нереализуемо или непрактично.

Иногда при построении модели игнорируются существенные аспекты, поскольку они не поддаются измерению. Например, модель определения эффективности новой технологии будет некорректной, если в нее встроена только информация о снижении издержек в соответствии с увеличением специализации. В общем, построение модели наиболее затруднительно в условиях неопределенности. Когда необходимая информация настолько неопределенна, что ее трудно получить исходя из критерия объективности, руководителю, возможно, целесообразнее положиться на свой опыт, способность к суждению, интуицию и помощь консультантов.

Страх пользователей. Модель нельзя считать эффективной, если ею не пользуются. Основная причина неиспользования модели заключается в том, что руководители, которым она предназначена, могут не вполне понимать получаемые с помощью модели результаты и потому боятся ее применять. Для борьбы с этим возможным страхом специалистам по количественным методам анализа следует значительно больше времени уделять ознакомлению руководителей с возможностями и порядком использования моделей. Руководители должны быть подготовлены к применению моделей, а высшему руководству следует подчеркивать, насколько успех организации зависит от моделей и как они повышают способность руководителей эффективно планировать и контролировать работу организации.

Слабое использование на практике. Согласно ряду исследований уровень методов моделирования в рамках науки управления превосходит уровень использования моделей. Как указывалось выше, одна из причин такого положения дел - страх. Другими причинами могут быть недостаток знаний и сопротивление переменам. Данная проблема подкрепляет желательность того, чтобы на стадии построения модели штабные специалисты привлекали к этому пользователей. Когда люди имеют возможность обсудить и лучше понять вопрос, метод или предполагаемое изменение, их сопротивление обычно снижается.

Чрезмерная стоимость. Выгоды от использования модели, как и других методов управления, должны с избытком оправдывать ее стоимость. При установлении издержек на моделирование руководству следует учи­тывать затраты времени руководителей высшего и низшего уровней на построение модели и сбор информации, расходы, время на обучение, стоимость обработки и хранения информации.

Основные модели, используемые для разработки управленческих реше­ний. Существует огромное множество конкретных моделей, используемых для разработки управленческих решений. Их число также велико,

как и число проблем, для разрешения которых они были разработаны .

В общем виде в составе экономико-математических моделей можно выделить следующие:

■ модели линейного программирования;

■ оптимальные экономико-математические модели (имитационные модели, модели сетевого планирования и управления);

■ модели анализа динамики экономических процессов;

■ модели прогнозирования экономических процессов (трендовые модели на основе кривых роста, адаптивные модели прогнозирования);

■ балансовые модели;

■ эконометрические модели;

■ прочие прикладные модели экономических процессов (модель спроса и предложения, модели управления запасами, модели теории массового обслуживания, модели теории игр).

Рассмотрим подробнее некоторые из перечисленных моделей, наиболее часто использующиеся в практике управления.

Модели теории игр. Одна из важнейших переменных, от которой зависит успех организации, - конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации.

Теория игр - это метод моделирования воздействия принятого решения на конкурентов.

Теорию игр изначально разработали военные с тем, чтобы в стратегии можно было учесть возможные действия противника. В бизнесе игровые модели используются для прогнозирования реакции конкурентов на изменение цен, новые кампании поддержки сбыта, предложения дополнительного обслуживания, модификацию и освоение новой продукции. Если, например, с помощью теории игр руководство устанавливает, что при повышении цен конкуренты не сделают того же, оно, вероятно, должно отказаться от этого шага, чтобы не попасть в невыгодное положение в конкурентной борьбе.

Теория игр используется не так часто, как другие описываемые здесь модели, так как ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики фирмы. Тем не менее теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет руководству учесть дополнительные переменные или факторы, могущие повлиять на ситуацию, и тем самым повышает эффективность решения .

■ на размещение заказов;

■ на хранение;

■ потери, связанные с недостаточным уровнем запасов.

Последние имеют место при исчерпании запасов. В этом случае продажа готовой продукции или предоставление обслуживания невозможно, кроме того, возникают потери от простоя производственных линий, в частности в связи с необходимостью оплаты труда работников, хотя они не работают в данный момент.

Поддержание высокого уровня запасов избавляет от потерь. Закупка в больших количествах материалов, необходимых для создания запасов, во многих случаях сводит к минимуму издержки на размещение заказов, поскольку фирма может получить соответствующие скидки и снизить объем «бумажной работы». Однако эти потенциальные выгоды перекрываются дополнительными издержками - расходами на хранение, перегрузку, выплату процентов, затратами на страхование, потерями от порчи, воровства и дополнительными налогами.

Кроме того, руководство должно учитывать возможность связывания оборотных средств избыточными запасами, что препятствует вложению капитала в приносящие прибыль акции, облигации или банковские депозиты. Разработано несколько специфических моделей, помогающих руководству установить, когда и сколько материалов заказывать в запас, какой уровень незавершенного производства и запаса готовой продукции поддерживать .

Читайте также: