Приведение системы сил к простейшему виду. Задачи на тему приведение системы сил к простейшему виду. Приведение системы сил к центру

Плоская система сил тоже приводится к силе, равной и приложенной в произвольно выбранном центре О, и паре с моментом

при этом вектор можно определить или геометрически построением силового многоугольника (см. п. 4), или аналитически. Таким образом, для плоской системы сил

R x =F kx , R y =F ky ,

где все моменты в последнем равенстве алгебраические и сумма тоже алгебраическая.

Найдем, к какому простейшему виду может приводиться данная плоская система сил, не находящаяся в равновесии. Результат зависит от значений R и М O .

  • 1. Если для данной системы сил R=0, a M O ?0, то она приводится к одной паре с моментом М O , значение которого не зависит от выбора центра О.
  • 2. Если для данной системы сил R?0, то она приводится к одной силе, т. е. к равнодействующей. При этом возможны два случая:
    • а) R?0, М O =0. В этом случае система, что сразу видно, приводится к равнодействующей R, проходящей через центр О;
    • б) R?0, М O ?0. В этом случае пару с моментом М O можно изобразить двумя силами R" и R", беря R"=R, a R"= - R. При этом, если d=OC - плечо пары, то должно быть Rd=|M O |.

Отбросив теперь силы R и R", как уравновешенные, найдем, что вся система сил заменяется равнодействующей R"=R, проходящей через точку С. Положение точки С определяется двумя условиями: 1) расстояние OC=d () должно удовлетворять равенству Rd=|M O |; 2) знак момента относительно центра О силы R", приложенной в точке С, т. е. знак m O (R") должен совпадать со знаком М O .

Как показано в § 12, любая приводится в общем случае к силе, равной главному вектору R и приложенной в произвольном центре О, и к паре с моментом, равным главному моменту (см. рис. 40, б). Найдем, к какому простейшему виду может приводиться пространственная система сил, не находящаяся в равновесии. Результат зависит от значений, которые у этой системы имеют величины R и

1. Если для данной системы сил , а то она приводится к паре сил, момент которой равен и может быть вычислен по формулам (50). В этом случае, как было показано в § 12, значение от выбора центра О не зависит.

2. Если для данной системы сил то она приводится к равнодействующей, равной R, линия действия которой проходит через центр О. Значение R можно найти по формулам (49).

3. Если для данной системы сил но то эта система также приводится к равнодействующей, равной R, но не проходящей через центр О.

Действительно, при пара, изображаемая вектором и сила R лежат в одной плоскости (рис. 91).

Тогда, выбрав силы пары равными по модулю R и располагая их так, как показано на рис. 91, получим, что силы взаимно уравновесятся, и система заменится одной равнодействующей линия действия которой проходит через точку О (см, § 15, п. 2, б). Расстояние ) определяется при этом по формуле (28), где

Легко убедиться, что рассмотренный случай будет, в частности, всегда иметь место для любой системы параллельных сил или сил, лежащих в одной плоскости, если главный вектор этой системы Если для данной системы сил и при этом вектор параллелен R (рис. 92, а), то это означает, что система сил приводится к совокупности силы R и пары Р, Р, лежащей в плоскости, перпендикулярной силе (рис. 92, б). Такая совокупность силы и пары называется динамическим винтом, а прямая, вдоль которой направлен вектор R, осью винта. Дальнейшее упрощение этой системы сил невозможно. В самом деле, если за центр приведения принять любую другую точку С (рис. 92, а), то вектор можно перенести в точку С как свободный, а при переносе силы R в точку С (см. § 11) добавится еще одна пара с моментом перпендикулярным вектору R, а следовательно, и . В итоге момент результирующей пары численно будет больше таким образом, момент результирующей пары имеет в данном случае при приведении к центру О наименьшее значение. К одной силе (равнодействующей) или к одной паре данную систему сил привести нельзя.

Если одну из сил пары, например Р, сложить с силой R, то рассматриваемую систему сил можно еще заменить двумя скрещивающимися, т. е. не лежащими в одной плоскости силами Q и (рис. 93). Так как полученная система сил эквивалентна динамическому винту, то она также не имеет равнодействующей.

5. Если для данной системы сил и при этом векторы и R не перпендикулярны друг другу и не параллельны, то такая система сил тоже приводится к динамическому винту, но ось винта не будет проходить через центр О.

Чтобы доказать это, разложим вектор на составляющие: направленную вдоль R, и перпендикулярную R (рис. 94). При этом , где - векторами и R. Пару, изображаемую вектором и силу R можно, как в случае, показанном на рис. 91, заменить одной силой R, приложенной в точке О, Тогда данная система сил заменится силой и парой смоментом параллельным причем вектор как свободный, можно тоже приложить в точке О. В результате действительно получится динамический винт, но с осью, проходящей через точку


Статика твердого тела:
Пространственная система сил
§ 7. Приведение системы сил к простейшему виду

Задачи на тему

7.1 К вершинам куба приложены по направлениям ребер силы, как указано на рисунке. Каким условиям должны удовлетворять модули сил F1, F2, F3, F4, F5 и F6, чтобы они находились в равновесии?
РЕШЕНИЕ

7.2 По трем непересекающимся и непараллельным ребрам прямоугольного параллелепипеда действуют три равные по модулю силы P. Какое соотношение должно существовать между ребрами a, b и c, чтобы эта система приводилась к одной равнодействующей?
РЕШЕНИЕ

7.3 К четырем вершинам A, H, B и D куба приложены четыре равные по модулю силы: P1=P2=P3=P4=P, причем сила P1 направлена по AC, P2 по HF, P3 по BE и P4 по DG. Привести эту систему к простейшему виду.
РЕШЕНИЕ

7.4 К правильному тетраэдру ABCD, ребра которого равны a, приложены силы: F1 по ребру AB, F2 по ребру CD и F3 в точке E середине ребра BD. Величины сил F1 и F2 какие угодно, а проекции силы F3 на оси x, y и z равны +F25√3/6; -F2/2; -F2√(2/3). Приводится ли эта система сил к одной равнодействующей? Если приводится, то найти координаты x и z точки пересечения линии действия равнодействующей с плоскостью Oxz.
РЕШЕНИЕ

7.5 К вершинам куба, ребра которого имеют длину 5 см, приложены, как указано на рисунке, шесть равных по модулю сил, по 2 Н каждая. Привести эту систему к простейшему виду.
РЕШЕНИЕ

7.6 Систему сил: P1=8 Н, направленную по Oz, и P2=12 Н, направленную параллельно Oy, как указано на рисунке, где OA=1,3 м, привести к каноническому виду, определив величину главного вектора V всех этих сил и величину их главного момента M относительно произвольной точки, взятой на центральной винтовой оси. Найти углы α, β и γ, составляемые центральной винтовой осью с координатными осями, а также координаты x и y точки встречи ее с плоскостью Oxy.
РЕШЕНИЕ

7.7 Три силы P1, P2 и P3 лежат в координатных плоскостях и параллельны осям координат, но могут быть направлены как в ту, так и в другую сторону. Точки их приложения A, B и C находятся на заданных расстояниях a, b и c от начала координат. Какому условию должны удовлетворять величины этих сил, чтобы они приводились к одной равнодействующей? Какому условию должны удовлетворять величины этих сил, чтобы существовала центральная винтовая ось, проходящая через начало координат?
РЕШЕНИЕ

7.8 К правильному тетраэдру ABCD с ребрами, равными a, приложена сила F1 по ребру AB и сила F2 по ребру CD. Найти координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.9 По ребрам куба, равным a, действуют двенадцать равных по модулю сил P, как указано на рисунке. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.10 По ребрам прямоугольного параллелепипеда, соответственно равным 10 м, 4 м и 5 м, действуют шесть сил, указанных на рисунке: P1=4 Н, P2=6 Н, P3=3 Н, P4=2 Н, P5=6 Н, P6=8 Н. Привести эту систему сил к каноническому виду и определить координаты x и y точки пересечения центральной винтовой оси с плоскостью Oxy.
РЕШЕНИЕ

7.11 Равнодействующие P=8000 кН и F=5200 кН сил давления воды на плотину приложены в средней вертикальной плоскости перпендикулярно соответствующим граням на расстоянии H=4 м и h=2,4 м от основания. Сила веса G1=12000 кН прямоугольной части плотины приложена в ее центре, а сила веса G2=6000 кН треугольной части на расстоянии одной трети длины нижнего основания треугольного сечения от вертикальной грани этого сечения. Ширина плотины в основании b=10 м, в верхней части a=5 м; tg α=5/12. Определить равнодействующую распределенных сил реакции грунта, на котором установлена плотина.
РЕШЕНИЕ

7.12 Вес радиомачты с бетонным основанием G=140 кН. К мачте приложены сила натяжения антенны F=20 кН и равнодействующая сил давления ветра P=50 кН; обе силы горизонтальны и расположены во взаимно перпендикулярных плоскостях; H=15 м, h=6 м. Определить результирующую реакцию грунта, в котором уложено основание мачты.

Случаи приведения к простейшему виду

Приведение к паре

Пусть в результате приведения сил к центру О оказалось, что главный вектор равен нулю, а главный момент отличен от нуля: . Тогда в силу основной теоремы статики можем написать

Это означает, что исходная система сил в этом случае эквивалентна паре сил с моментом .

Момент пары не зависит от того, какая точка выбрана в качестве центра моментов при вычислении момента пары. Следовательно, в данном случае главный момент не должен зависеть от выбора центра приведения. Но именно к этому выводу и приводит соотношение

связывающее главные моменты относительно двух различных центров. При добавочный член также равен нулю, и мы получаем

Приведение к равнодействующей

Пусть теперь главный вектор не равен нулю, а главный момент равен нулю: . В силу основной теоремы статики имеем

то есть система сил оказывается эквивалентной одной силе - главному вектору. Следовательно, в этом случае исходная система сил приводится к равнодействующей, и эта равнодействующая совпадает с главным вектором, приложенным в центре приведения: .

Система сил приводится к равнодействующей и в том случае, когда главный вектор и главный момент оба не равны нулю, но взаимно перпендикулярны: . Доказательство осуществляется при помощи следующей последовательности действий.

Через центр приведения О проводим плоскость, перпендикулярную главному моменту (рис. 50, а). На рисунке эта плоскость совмещена с плоскостью чертежа, в ней же расположен главный вектор . В этой плоскости строим пару с моментом , причем силы пары выберем равными по модулю главному вектору ; тогда плечо пары будет равно . Далее переместим пару в ее плоскости таким образом, чтобы одна из сил пары оказалась приложенной в центре приведения О противоположно главному ; вторая сила пары будет приложена в точке С, отстоящей от центра О в нужную сторону, определяемую направлением , на расстоянии ОС, равном плечу пары h (рис. 50, б). Отбрасывая теперь уравновешенные силы R и - , приложенные в точке О, приходим к одной силе , приложенной в точке С (рис. 50, в). Она и будет служить равнодействующей данной системы сил .

Видно, что равйодействующая по-прежнему равна главному вектору , однако отличается от главного вектора своей точкой приложения. Если главный вектор приложен в центре приведения О, то равнодействующая - в точке С, положение которой требует специального определения. Геометрический способ нахождения точки С виден из проделанного выше построения.

Для момента равнодействующей относительно центра приведения О можно написать (см. рис. 50):

или, опуская промежуточные значения:

Если спроектировать это векторное равенство на какую-либо ось , проходящую через точку О, получаем соответствующее равенство в проекциях:

Вспоминая, что проекция момента силы относительно точки на ось, проходящую через эту точку, является моментом силы относительно оси, перепишем этой равенство так:

Полученные равенства выражают теорему Вариньона в ее общем виде (в лекции 2 теорема была сформулирована только для сходящихся сил): если система сил имеет равнодействующую, то момент этой равнодействующей (относительно точки, относительно оси) равен сумме моментов всех заданных сил - составляющих (относительно той же точки, той же оси). Понятно, что в случае точки суммирование моментов векторное, в случае оси - алгебраическое.

Приведение к динаме

Динамой или динамическим винтом называется совокупность пары сил и силы, направленной перпендикулярно плоскости действия пары. Можно показать, что в общем случае приведения, когда и не перпендикулярен , исходная система сил эквивалентна некоторой динаме.

Как выше было доказано, произвольная система сил, как угодно расположенных в пространстве, может быть приведена к одной силе, равной главному вектору системы и приложенной в произвольном центре приведения О , и одной паре с моментом , равным глав­ному моменту системы относительно того же центра. Поэтому в дальнейшем произвольную систему сил можно заменять эквива­лентной ей совокупностью двух векторов - силы и момента , приложенных в точке О . При изменении положения центра приведения О главный вектор будет сохранять величину и напра­вление, а главный момент будет изменяться. Докажем, что если главный вектор отличен от нуля и перпендикулярен к главному моменту, то система сил приводится к одной силе, которую в этом случае будем называть равнодействующей (рис.8). Главный момент можно представить парой сил ( , ) с плечом , тогда силы и главный век тор образуют систему двух

сил эквивалентную нулю, которую можно отбросить. Останется одна сила , действующая вдоль прямой, параллельной главно

Рис 8 му вектору и проходящей на расстоянии

h = от плоскости, образуемой векторами и . Рассмотренный случай показывает, что если с самого начала выбрать центр приведения на прямой L, то систему сил сразу бы привели к равнодействующей, главный момент был бы равен нулю. Теперь докажем, что если главный вектор отличен от нуля и не перпендикулярен к главному моменту, то за центр приведения может быть выбрана такая точка О *, что главный момент относительно этой точки и главный вектор расположатся на одной прямой. Для доказательства разложим момент на две составляю­щие- одну , направленную вдоль главного вектора, и другую - перпендикулярную к главному вектору. Тем самым пара сил раскладывается на две пары с моментами: и , причем плоскость первой пары перпендикулярна к , тогда плоскость второй пары, перпендикулярная к вектору (рис 9) содержит вектор . Совокупность пары с моментом и силы образует систему сил, которая может быть сведена к одной силе (рис.8) , проходящей через точку О* . Таким образом (рис 9), совокупность главного вектора и главного момента в точке О сведена к силе , проходящей через точку О* , и паре с моментом параллельным этой прямой , что и требовалось доказать. Совокупность силы и пары, плоскость которой перпендикулярна к линии действия силы, называется динамой (рис.10). Пару сил можно представить двумя равными по величине силами ( , ), расположенными как показано на рис 10. Но, сложив две силы и , получим их сумму и оставшуюся силу , откуда следует (рис.10), что совокупность главного вектора и главного момента в точке О , может быть сведена к двум непересекающимся силам и .

Рассмотрим некоторые случаи приведения системы сил.

1. Плоская система сил. Пусть для определённости все силы находятся в плоскости OXY . Тогда в самом общем случае

Главный вектор не равен нулю, главный момент не равен нулю, их скалярное произведение равно нулю, действительно

следовательно, главный вектор перпендикулярен главному моменту: плоская система сил приводится к равнодействующей.

2. Система параллельных сил. Пусть для определённости все силы параллельны оси OZ . Тогда в самом общем случае

Здесь также главный вектор не равен нулю, главный момент не равен нулю, а их скалярное произведение равно нулю, действительно

следовательно, и этом случае главный вектор перпендикулярен главному моменту: система параллельных сил приводится к равнодействующей. В частном случае, если равен нулю, то и главный вектор сил равен нулю, и система сил приводится к паре сил, вектор момента которой находится в плоскости OXY . Систематизируем теперь рассмотренные случаи. Напомним: произвольная пространственная система сил, приложенная к твердому телу, статически эквивалентна силе, равной главному вектору, приложенной в произвольной точке тела (центре приведения), и паре сил с моментом, равным главному моменту системы сил относительно указанного центра приведения.

Читайте также: