Теория вероятностей введение. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график Плотность вероятности дискретной случайной величины

Результат любого случайного эксперимента можно характеризовать качественно и количественно. Качественный результат случайного эксперимента - случайное событие . Любая количественная характеристика , которая в результате случайного эксперимента может принять одно из некоторого множества значений, - случайная величина. Случайная величина является одним из центральных понятий теории вероятностей.

Пусть - произвольное вероятностное пространство. Случайной величиной называется действительная числовая функция x =x (w ), w W , такая, что при любом действительном x .

Событие принято записывать в виде x < x . В дальнейшем случайные величины будем обозначать строчными греческими буквами x , h , z , …

Случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента. В первом случае мы имеем дело с дискретной случайной величиной (она принимает значения из дискретного числового множества M= {1, 2, 3, 4, 5, 6} ; во втором случае - с непрерывной случайной величиной (она принимает значения из непрерывного числового множества - из промежутка числовой прямой I =).

Каждая случайная величина полностью определяется своей функцией распределения .

Если x .- случайная величина, то функция F (x ) = F x (x ) = P (x < x ) называется функцией распределения случайной величины x . Здесь P (x < x ) - вероятность того, что случайная величина x принимает значение, меньшее x .

Важно понимать, что функция распределения является “паспортом” случайной величины: она содержит всю информация о случайной величине и поэтому изучение случайной величины заключается в исследовании ее функции распределения, которую часто называют просто распределением .

Функция распределения любой случайной величины обладает следующими свойствами:

Если x - дискретная случайная величина, принимающая значения x 1 < x 2 < … < x i < … с вероятностями p 1 < p 2 < … < p i < …, то таблица вида

x 1 x 2 x i
p 1 p 2 p i

называется распределением дискретной случайной величины .

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

Если функция распределения F x (x ) непрерывна, то случайная величина x называется непрерывной случайной величиной.

Если функция распределения непрерывной случайной величины дифференцируема , то более наглядное представление о случайной величине дает плотность вероятности случайной величины p x (x ), которая связана с функцией распределения F x (x ) формулами

и .

Отсюда, в частности, следует, что для любой случайной величины .

При решении практических задач часто требуется найти значение x , при котором функция распределения F x (x ) случайной величины x принимает заданное значение p , т.е. требуется решить уравнение F x (x ) = p . Решения такого уравнения (соответствующие значения x ) в теории вероятностей называются квантилями.

Квантилью x p (p -квантилью, квантилью уровня p ) случайной величины , имеющей функцию распределения F x (x ), называют решение x p уравнения F x (x ) = p , p (0, 1). Для некоторых p уравнение F x (x ) = p может иметь несколько решений, для некоторых - ни одного. Это означает, что для соответствующей случайной величины некоторые квантили определены неоднозначно, а некоторые кванитили не существуют.

Пусть дискретная физическая величина Х может принимать в результате опыта значения . Отношение числа опытов , в результате которых величина принимает значение , к общему числу проведенных опытов n называется частотой появления события . Частота является случайной величиной и меняется в зависимости от количества проведенных опытов. Однако при большом количестве опытов (в пределе n → ∞) она стабилизируется около некоторого значения , называемого вероятностью события (статистическое определение):

Очевидно, что сумма вероятностей реализации всех возможных значений случайной величины равна единице:

Дискретную случайную величину можно полностью задать вероятностным рядом, указав вероятность для каждого значения :

Законом распределения случайной величины называют любое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Вероятностный ряд является одним из видов законов распределения случайной величины. Распределение непрерывной случайной величины нельзя задать вероятностным рядом, поскольку число значений, которое она может принимать, так велико, что для большинства из них вероятность принять эти значения равна нулю. Поэтому для непрерывных физических величин изучается вероятность того, что в результате опыта значение случайной величины попадет в некоторый интервал. Удобно пользоваться вероятностью события , где - произвольное действительное число. Эта вероятность

является функцией от и называется функцией распределения (предельной функцией распределения, функцией распределения генеральной совокупности) случайной величины. В виде функции распределения можно задать распределение как непрерывной, так и дискретной случайной величины (рис. 2 и 3). F(x) является неубывающей функцией, т.е. если х1 ≤ х2, то F(х1) ≤ F(х2) (рис. 3).

Рис. 2. Функция распределения Рис. 3. Функция распределения

дискретной случайной величины. непрерывной случайной величины.

Ордината кривой , соответствующая точке , представляет собой вероятность того, что случайная величина при испытании окажется . Тогда вероятность того, что значения случайной величины будут лежать в интервале от , до , равна

Значения при предельных значениях аргумента равны , . Следует отметить, что функция распределения дискретной случайной величины всегда есть разрывная функция. Скачки происходят в точках, соответствующих возможным значениям этой величины, и равны вероятностям этих значений (рис. 2).

Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие плотности вероятности непрерывной случайной величины.

Рассмотрим вероятность попадания непрерывной случайной величины на интервал [х , х + Δх ]. Вероятность такого события

P (х X х + Δх ) = F (х + Δх ) – F (х ),

т.е. равна приращению функции распределения F (х ) на этом участке. Тогда вероятность, приходящаяся на единицу длины, т.е. средняя плотность вероятности на участке от х до х + Δх , равна

Переходя к пределу Δх → 0, получим плотность вероятности в точке х :

представляющую производную функции распределения F (х ). Напомним, что для непрерывной случайной величины F (х ) – дифференцируемая функция.

Определение. Плотностью вероятности (плотностью распределения ) f (x ) непрерывной случайной величины Х называется производная ее функции распределения

f (x ) = F ′(x ). (4.8)

Про случайную величину Х говорят, что она имеет распределение с плотностью f (x ) на определенном участке оси абсцисс.

Плотность вероятности f (x ), как и функция распределения F (x ) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для непрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности называется кривой распределения .

Пример 4.4. По данным примера 4.3 найти плотность вероятности случайной величины Х .

Решение. Будем находить плотность вероятности случайной величины как производную от ее функции распределения f (x ) = F "(x ).

Отметим свойства плотности вероятности непрерывной случайной величины.

1. Плотность вероятности – неотрицательная функция , т.е.

Геометрически вероятность попадания в интервал [α , β ,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α , β ,] (рис.4.4).

Рис. 4.4 Рис. 4.5

3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле :

Геометрически свойства 1 и 4 плотности вероятности означают, что ее график – кривая распределения – лежит не ниже оси абсцисс, а полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 4.5. Функция f (x ) задана в виде:

Найти: а) значение А ; б) выражение функции распределения F (х ); в) вероятность того, что случайная величина Х примет значение на отрезке .

Решение. а) Для того, чтобы f (x ) была плотностью вероятности некоторой случайной величины Х , она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А . С учетом свойства 4 находим:

, откуда А = .

б) Функцию распределения находим, используя свойство 3 :

Если x ≤ 0, то f (x ) = 0 и, следовательно, F (x ) = 0.

Если 0 < x ≤ 2, то f (x ) = х /2 и, следовательно,

Если х > 2, то f (x ) = 0 и, следовательно

в) Вероятность того, что случайная величина Х примет значение на отрезке находим, используя свойство 2 .

Пусть $X$ -- непрерывная случайная величина с функцией распределения вероятностей $F(x)$. Напомним определение функции распределения:

Определение 1

Функцией распределения называется функция $F(x)$ удовлетворяющая условию $F\left(x\right)=P(X

Так как случайная величина является непрерывной, то, как нам уже известно, функция распределения вероятностей $F(x)$ будет непрерывной функцией. Пусть $F\left(x\right)$ также дифференцируема на всей области определения.

Рассмотрим интервал $(x,x+\triangle x)$ (где $\triangle x$ - приращение величины $x$). На нем

Теперь устремляя значения приращения $\triangle x$ к нулю, получим:

Рисунок 1.

Таким образом, получаем:

Плотность распределения, как и функция распределения, - это одна из форм закона распределения случайной величины. Однако закон распределения может быть записан через плотность распределения только для непрерывных случайных величин.

Определение 3

Кривая распределения -- это график функции $\varphi \left(x\right)$ плотность распределения случайной величины (рис.1).

Рисунок 2. График плотности распределения.

Геометрический смысл 1: Вероятность попадания непрерывной случайной величины в интервал $(\alpha ,\beta)$ равна площади криволинейной трапеции, ограниченной графиком функции распределения $\varphi \left(x\right)$ и прямыми $x=\alpha ,$ $x=\beta $ и $y=0$ (рис. 2).

Рисунок 3. Геометрическое изображение вероятности попадания непрерывной случайной величины в интервал $(\alpha ,\beta)$.

Геометрический смысл 2: Площадь бесконечной криволинейной трапеции, ограниченной графиком функции распределения $\varphi \left(x\right)$, прямой $y=0$ и переменной прямой $x$ есть ни что иное как функция распределения $F(x)$(рис. 3).

Рисунок 4. Геометрическое изображение функции вероятности $F(x)$ через плотность распределения $\varphi \left(x\right)$.

Пример 1

Пусть функция распределения $F(x)$ случайной величины $X$ имеет следующий вид.

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

Читайте также: