Какие из функций являются нечетными. Четность функции. Словесное описание функции

Которые в той или иной степени были вам знакомы. Там же было замечено, что запас свойств функций будет постепенно пополняться. О двух новых свойствах и пойдет речь в настоящем параграфе.

Определение 1.

Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х).

Определение 2.

Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х).

Доказать, что у = х 4 - четная функция.

Решение. Имеем: f(х) = х 4 , f(-х) = (-х) 4 . Но (-х) 4 = х 4 . Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной.

Аналогично можно доказать, что функции у - х 2 ,у = х 6 ,у - х 8 являются четными.

Доказать, что у = х 3 ~ нечетная функция.

Решение. Имеем: f(х) = х 3 , f(-х) = (-х) 3 . Но (-х) 3 = -х 3 . Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной.

Аналогично можно доказать, что функции у = х, у = х 5 , у = х 7 являются нечетными.

Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у - х 3 , у = х 5 , у = х 7 - нечетные функции, тогда как у = х 2 , у = х 4 , у = х 6 - четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n - натуральное число , можно сделать вывод: если n - нечетное число, то функция у = х" - нечетная; если же n - четное число, то функция у = хn - четная.

Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х).

Итак, функция может быть четной, нечетной, а также ни той ни другой.

Изучение вопроса о том, является ли заданная функция четной или нечетной, обычно называют исследованием функции на четность.

В определениях 1 и 2 речь идет о значениях функции в точках х и -х. Тем самым предполагается, что функция определена и в точке х, и в точке -х. Это значит, что точка -х принадлежит области определения функции одновременно с точкой х. Если числовое множество X вместе с каждым своим элементом х содержит и противоположный элемент -х, то X называют симметричным множеством. Скажем, (-2, 2), [-5, 5], (-оо, +оо) - симметричные множества, в то время как \) .

Так как \(x^2\geqslant 0\) , то левая часть уравнения (*) больше или равна \(0+ \mathrm{tg}^2\,1\) .

Таким образом, равенство (*) может выполняться только тогда, когда обе части уравнения равны \(\mathrm{tg}^2\,1\) . А это значит, что \[\begin{cases} 2x^2+\mathrm{tg}^2\,1=\mathrm{tg}^2\,1 \\ \mathrm{tg}\,1\cdot \mathrm{tg}\,(\cos x)=\mathrm{tg}^2\,1 \end{cases} \quad\Leftrightarrow\quad \begin{cases} x=0\\ \mathrm{tg}\,(\cos x)=\mathrm{tg}\,1 \end{cases}\quad\Leftrightarrow\quad x=0\] Следовательно, значение \(a=-\mathrm{tg}\,1\) нам подходит.

Ответ:

\(a\in \{-\mathrm{tg}\,1;0\}\)

Задание 2 #3923

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых график функции \

симметричен относительно начала координат.

Если график функции симметричен относительно начала координат, то такая функция является нечетной, то есть выполнено \(f(-x)=-f(x)\) для любого \(x\) из области определения функции. Таким образом, требуется найти те значения параметра, при которых выполнено \(f(-x)=-f(x).\)

\[\begin{aligned} &3\mathrm{tg}\,\left(-\dfrac{ax}5\right)+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right)\quad \Rightarrow\quad -3\mathrm{tg}\,\dfrac{ax}5+2\sin \dfrac{8\pi a+3x}4= -\left(3\mathrm{tg}\,\left(\dfrac{ax}5\right)+2\sin \dfrac{8\pi a-3x}4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac{8\pi a+3x}4+\sin \dfrac{8\pi a-3x}4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac{8\pi a+3x}4+\dfrac{8\pi a-3x}4\right)\cdot \cos \dfrac12 \left(\dfrac{8\pi a+3x}4-\dfrac{8\pi a-3x}4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \frac34 x=0 \end{aligned}\]

Последнее уравнение должно быть выполнено для всех \(x\) из области определения \(f(x)\) , следовательно, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\mathbb{Z}\) .

Ответ:

\(\dfrac n2, n\in\mathbb{Z}\)

Задание 3 #3069

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \ имеет 4 решения, где \(f\) – четная периодическая с периодом \(T=\dfrac{16}3\) функция, определенная на всей числовой прямой, причем \(f(x)=ax^2\) при \(0\leqslant x\leqslant \dfrac83.\)

(Задача от подписчиков)

Так как \(f(x)\) – четная функция, то ее график симметричен относительно оси ординат, следовательно, при \(-\dfrac83\leqslant x\leqslant 0\) \(f(x)=ax^2\) . Таким образом, при \(-\dfrac83\leqslant x\leqslant \dfrac83\) , а это отрезок длиной \(\dfrac{16}3\) , функция \(f(x)=ax^2\) .

1) Пусть \(a>0\) . Тогда график функции \(f(x)\) будет выглядеть следующим образом:


Тогда для того, чтобы уравнение имело 4 решения, нужно, чтобы график \(g(x)=|a+2|\cdot \sqrtx\) проходил через точку \(A\) :


Следовательно, \[\dfrac{64}9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &9(a+2)=32a\\ &9(a+2)=-32a \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a>0\) , то подходит \(a=\dfrac{18}{23}\) .

2) Пусть \(a<0\) . Тогда картинка окажется симметричной относительно начала координат:


Нужно, чтобы график \(g(x)\) прошел через точку \(B\) : \[\dfrac{64}9a=|a+2|\cdot \sqrt{-8} \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &a=\dfrac{18}{23}\\ &a=-\dfrac{18}{41} \end{aligned} \end{gathered}\right.\] Так как \(a<0\) , то подходит \(a=-\dfrac{18}{41}\) .

3) Случай, когда \(a=0\) , не подходит, так как тогда \(f(x)=0\) при всех \(x\) , \(g(x)=2\sqrtx\) и уравнение будет иметь только 1 корень.

Ответ:

\(a\in \left\{-\dfrac{18}{41};\dfrac{18}{23}\right\}\)

Задание 4 #3072

Уровень задания: Равен ЕГЭ

Найдите все значения \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень.

(Задача от подписчиков)

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=7\sqrt{2x^2+49}\) и \(f(x)=3|x-7a|-6|x|-a^2+7a\) .
Функция \(g(x)\) является четной, имеет точку минимума \(x=0\) (причем \(g(0)=49\) ).
Функция \(f(x)\) при \(x>0\) является убывающей, а при \(x<0\) – возрастающей, следовательно, \(x=0\) – точка максимума.
Действительно, при \(x>0\) второй модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется первый модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(-9\) , либо \(-3\) . При \(x<0\) наоборот: второй модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(3\) , либо \(9\) .
Найдем значение \(f\) в точке максимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ \\]

Ответ:

\(a\in \{-7\}\cup\)

Задание 5 #3912

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет шесть различных решений.

Сделаем замену \((\sqrt2)^{x^3-3x^2+4}=t\) , \(t>0\) . Тогда уравнение примет вид \ Будем постепенно выписывать условия, при которых исходное уравнение будет иметь шесть решений.
Заметим, что квадратное уравнение \((*)\) может максимум иметь два решения. Любое кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) может иметь не более трех решений. Следовательно, если уравнение \((*)\) имеет два различных решения (положительных!, так как \(t\) должно быть больше нуля) \(t_1\) и \(t_2\) , то, сделав обратную замену, мы получим: \[\left[\begin{gathered}\begin{aligned} &(\sqrt2)^{x^3-3x^2+4}=t_1\\ &(\sqrt2)^{x^3-3x^2+4}=t_2\end{aligned}\end{gathered}\right.\] Так как любое положительное число можно представить как \(\sqrt2\) в какой-то степени, например, \(t_1=(\sqrt2)^{\log_{\sqrt2} t_1}\) , то первое уравнение совокупности перепишется в виде \ Как мы уже говорили, любое кубическое уравнение имеет не более трех решений, следовательно, каждое уравнение из совокупности будет иметь не более трех решений. А значит и вся совокупность будет иметь не более шести решений.
Значит, чтобы исходное уравнение имело шесть решений, квадратное уравнение \((*)\) должно иметь два различных решения, а каждое полученное кубическое уравнение (из совокупности) должно иметь три различных решения (причем ни одно решение одного уравнения не должно совпадать с каким-либо решением второго!)
Очевидно, что если квадратное уравнение \((*)\) будет иметь одно решение, то мы никак не получим шесть решений у исходного уравнения.

Таким образом, план решения становится ясен. Давайте по пунктам выпишем условия, которые должны выполняться.

1) Чтобы уравнение \((*)\) имело два различных решения, его дискриминант должен быть положительным: \

2) Также нужно, чтобы оба корня были положительными (так как \(t>0\) ). Если произведение двух корней положительное и сумма их положительная, то и сами корни будут положительными. Следовательно, нужно: \[\begin{cases} 12-a>0\\-(a-10)>0\end{cases}\quad\Leftrightarrow\quad a<10\]

Таким образом, мы уже обеспечили себе два различных положительных корня \(t_1\) и \(t_2\) .

3) Давайте посмотрим на такое уравнение \ При каких \(t\) оно будет иметь три различных решения?
Рассмотрим функцию \(f(x)=x^3-3x^2+4\) .
Можно разложить на множители: \ Следовательно, ее нули: \(x=-1;2\) .
Если найти производную \(f"(x)=3x^2-6x\) , то мы получим две точки экстремума \(x_{max}=0, x_{min}=2\) .
Следовательно, график выглядит так:


Мы видим, что любая горизонтальная прямая \(y=k\) , где \(0\(x^3-3x^2+4=\log_{\sqrt2} t\) имело три различных решения, нужно, чтобы \(0<\log_ {\sqrt2}t<4\) .
Таким образом, нужно: \[\begin{cases} 0<\log_{\sqrt2}t_1<4\\ 0<\log_{\sqrt2}t_2<4\end{cases}\qquad (**)\] Давайте также сразу заметим, что если числа \(t_1\) и \(t_2\) различны, то и числа \(\log_{\sqrt2}t_1\) и \(\log_{\sqrt2}t_2\) будут различны, значит, и уравнения \(x^3-3x^2+4=\log_{\sqrt2} t_1\) и \(x^3-3x^2+4=\log_{\sqrt2} t_2\) будут иметь несовпадающие между собой корни.
Систему \((**)\) можно переписать так: \[\begin{cases} 1

Таким образом, мы определили, что оба корня уравнения \((*)\) должны лежать в интервале \((1;4)\) . Как записать это условие?
В явном виде выписывать корни мы не будем.
Рассмотрим функцию \(g(t)=t^2+(a-10)t+12-a\) . Ее график – парабола с ветвями вверх, которая имеет две точки пересечения с осью абсцисс (это условие мы записали в пункте 1)). Как должен выглядеть ее график, чтобы точки пересечения с осью абсцисс были в интервале \((1;4)\) ? Так:


Во-первых, значения \(g(1)\) и \(g(4)\) функции в точках \(1\) и \(4\) должны быть положительными, во-вторых, вершина параболы \(t_0\) должна также находиться в интервале \((1;4)\) . Следовательно, можно записать систему: \[\begin{cases} 1+a-10+12-a>0\\ 4^2+(a-10)\cdot 4+12-a>0\\ 1<\dfrac{-(a-10)}2<4\end{cases}\quad\Leftrightarrow\quad 4\(a\) всегда имеет как минимум один корень \(x=0\) . Значит, для выполнения условия задачи нужно, чтобы уравнение \

имело четыре различных корня, отличных от нуля, представляющих вместе с \(x=0\) арифметическую прогрессию.

Заметим, что функция \(y=25x^4+25(a-1)x^2-4(a-7)\) является четной, значит, если \(x_0\) является корнем уравнения \((*)\) , то и \(-x_0\) будет являться его корнем. Тогда необходимо, чтобы корнями этого уравнения были упорядоченные по возрастанию числа: \(-2d, -d, d, 2d\) (тогда \(d>0\) ). Именно тогда данные пять чисел будут образовывать арифметическую прогрессию (с разностью \(d\) ).

Чтобы этими корнями являлись числа \(-2d, -d, d, 2d\) , нужно, чтобы числа \(d^{\,2}, 4d^{\,2}\) являлись корнями уравнения \(25t^2+25(a-1)t-4(a-7)=0\) . Тогда по теореме Виета:

Перепишем уравнение в виде \ и рассмотрим две функции: \(g(x)=20a-a^2-2^{x^2+2}\) и \(f(x)=13|x|-2|5x+12a|\) .
Функция \(g(x)\) имеет точку максимума \(x=0\) (причем \(g_{\text{верш}}=g(0)=-a^2+20a-4\) ):
\(g"(x)=-2^{x^2+2}\cdot \ln 2\cdot 2x\) . Ноль производной: \(x=0\) . При \(x<0\) имеем: \(g">0\) , при \(x>0\) : \(g"<0\) .
Функция \(f(x)\) при \(x>0\) является возрастающей, а при \(x<0\) – убывающей, следовательно, \(x=0\) – точка минимума.
Действительно, при \(x>0\) первый модуль раскроется положительно (\(|x|=x\) ), следовательно, вне зависимости от того, как раскроется второй модуль, \(f(x)\) будет равно \(kx+A\) , где \(A\) – выражение от \(a\) , а \(k\) равно либо \(13-10=3\) , либо \(13+10=23\) . При \(x<0\) наоборот: первый модуль раскроется отрицательно и \(f(x)=kx+A\) , где \(k\) равно либо \(-3\) , либо \(-23\) .
Найдем значение \(f\) в точке минимума: \

Для того, чтобы уравнение имело хотя бы одно решение, нужно, чтобы графики функций \(f\) и \(g\) имели хотя бы одну точку пересечения. Следовательно, нужно: \ Решая данную совокупность систем, получим ответ: \\]

Ответ:

\(a\in \{-2\}\cup\)
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • сформировать понятие чётности и нечётности функции, учить умению определять и использовать эти свойства при исследовании функций, построении графиков;
  • развивать творческую активность учащихся, логическое мышление, умение сравнивать, обобщать;
  • воспитывать трудолюбие, математическую культуру; развивать коммуникативные качества.

Оборудование: мультимедийная установка, интерактивная доска, раздаточный материал.

Формы работы: фронтальная и групповая с элементами поисково-исследовательской деятельности.

Информационные источники:

1.Алгебра9класс А.Г Мордкович. Учебник.
2.Алгебра 9класс А.Г Мордкович. Задачник.
3.Алгебра 9 класс. Задания для обучения и развития учащихся. Беленкова Е.Ю. Лебединцева Е.А

ХОД УРОКА

1. Организационный момент

Постановка целей и задач урока.

2. Проверка домашнего задания

№10.17 (Задачник 9кл. А.Г. Мордкович).

а) у = f (х ), f (х ) =

б) f (–2) = –3; f (0) = –1; f (5) = 69;

в) 1. D(f ) = [– 2; + ∞)
2. Е(f ) = [– 3; + ∞)
3. f (х ) = 0 при х ~ 0,4
4. f (х ) >0 при х > 0,4 ; f (х ) < 0 при – 2 < х < 0,4.
5. Функция возрастает при х € [– 2; + ∞)
6. Функция ограничена снизу.
7. у наим = – 3, у наиб не существует
8. Функция непрерывна.

(Вы использовали алгоритм исследования функции?) Слайд.

2. Таблицу, которую вам задавалась, проверим по слайду.

Заполните таблицу

Область определения

Нули функции

Промежутки знакопостоянства

Координаты точек пересечения графика с Оу

х = –5,
х = 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ∞ –5,
х ≠ 2

х € (–5;3) U
U (2; ∞)

х € (–∞;–5) U
U (–3;2)

х ≠ –5,
х ≠ 2

х € (–∞; –5) U
U (2; ∞)

х € (–5; 2)

3. Актуализация знаний

– Даны функции.
– Указать область определения для каждой функции.
– Сравнить значение каждой функции для каждой пары значения аргумента: 1 и – 1; 2 и – 2.
– Для каких из данных функций в области определения выполняются равенства f (– х ) = f (х ), f (– х ) = – f (х )? (полученные данные занести в таблицу) Слайд

f (1) и f (– 1) f (2) и f (– 2) графики f (– х ) = –f (х ) f (– х ) = f (х )
1. f (х ) =
2. f (х ) = х 3
3. f (х ) = | х |
4. f (х ) = 2х – 3
5. f (х ) =

х ≠ 0

6. f (х )= х > –1

и не опред.

4. Новый материал

– Выполняя данную работу, ребята мы выявили ещё одно свойство функции, незнакомое вам, но не менее важное, чем остальные – это чётность и нечетность функции. Запишите тему урока: «Чётные и нечётные функции», наша задача – научиться определять чётность и нечётность функции, выяснить значимость этого свойства в исследовании функций и построении графиков.
Итак, найдём определения в учебнике и прочитаем (стр. 110). Слайд

Опр. 1 Функция у = f (х ), заданная на множестве Х называется чётной , если для любого значения х Є Х выполняется равенство f(–х)= f(х). Приведите примеры.

Опр. 2 Функция у = f (х) , заданная на множестве Х называется нечётной , если для любого значения х Є Х выполняется равенство f(–х)= –f(х). Приведите примеры.

Где мы встречались с терминами «четные» и «нечётные»?
Какие из данных функций будут чётными, как вы думаете? Почему? Какие нечётными? Почему?
Для любой функции вида у = х n , где n – целое число можно утверждать, что функция нечётна при n – нечётном и функция чётна при n – чётном.
– Функции вида у = и у = 2х – 3 не являются ни чётным, ни нечётными, т.к. не выполняются равенства f (– х ) = – f (х ), f (– х ) = f (х )

Изучение вопроса о том, является ли функция чётной или нечётной называют исследованием функции на чётность. Слайд

В определениях 1 и 2 шла речь о значениях функции при х и – х, тем самым предполагается, что функция определена и при значении х , и при – х .

Опр 3. Если числовое множество вместе с каждым своим элементом х содержит и противоположный элемент –х, то множество Х называют симметричным множеством.

Примеры:

(–2;2), [–5;5]; (∞;∞) – симметричные множества, а , [–5;4] – несимметричные.

– У чётных функций область определения – симметричное множество? У нечётных?
– Если же D(f ) – несимметричное множество, то функция какая?
– Таким образом, если функция у = f (х ) – чётная или нечётная, то её область определения D(f ) – симметричное множество. А верно ли обратное утверждение, если область определения функции симметричное множество, то она чётна, либо нечётна?
– Значит наличие симметричного множества области определения – это необходимое условие, но недостаточное.
– Так как же исследовать функцию на четность? Давайте попробуем составить алгоритм.

Слайд

Алгоритм исследования функции на чётность

1. Установить, симметрична ли область определения функции. Если нет, то функция не является ни чётной, ни нечётной. Если да, то перейти к шагу 2 алгоритма.

2. Составить выражение для f (– х ).

3. Сравнить f (– х ).и f (х ):

  • если f (– х ).= f (х ), то функция чётная;
  • если f (– х ).= – f (х ), то функция нечётная;
  • если f (– х ) ≠ f (х ) и f (– х ) ≠ –f (х ), то функция не является ни чётной, ни нечётной.

Примеры:

Исследовать на чётность функцию а) у = х 5 +; б) у = ; в) у = .

Решение.

а) h(х) = х 5 +,

1) D(h) = (–∞; 0) U (0; +∞), симметричное множество.

2) h (– х) = (–х) 5 + – х5 –= – (х 5 +),

3) h(– х) = – h (х) => функция h(х) = х 5 + нечётная.

б) у =,

у = f (х ), D(f) = (–∞; –9)? (–9; +∞), несимметричное множество, значит функция ни чётная, ни нечётная.

в) f (х ) = , у = f (х),

1) D(f ) = (–∞; 3] ≠ ; б) (∞; –2), (–4; 4]?

Вариант 2

1. Является ли симметричным заданное множество: а) [–2;2]; б) (∞; 0], (0; 7) ?


а); б) у = х· (5 – х 2). 2. Исследуйте на чётность функцию:

а) у = х 2 · (2х – х 3), б) у =

3. На рис. построен график у = f (х ), для всех х , удовлетворяющих условию х ? 0.
Постройте график функции у = f (х ), если у = f (х ) – чётная функция.

3. На рис. построен график у = f (х ), для всех х, удовлетворяющих условию х? 0.
Постройте график функции у = f (х ), если у = f (х ) – нечётная функция.

Взаимопроверка по слайду.

6. Задание на дом: №11.11, 11.21,11.22;

Доказательство геометрического смысла свойства чётности.

***(Задание варианта ЕГЭ).

1. Нечётная функция у = f(х) определена на всей числовой прямой. Для всякого неотрицательного значения переменной х значение этой функции совпадает со значением функции g(х ) = х (х + 1)(х + 3)(х – 7). Найдите значение функции h(х ) = при х = 3.

7. Подведение итогов

Преобразование графиков.

Словесное описание функции.

Графический способ.

Графический способ задания функции является наиболее наглядным и часто применяется в технике. В математическом анализе графический способ задания функций используется в качестве иллюстрации.

Графиком функции f называют множество всех точек (x;y) координатной плоскости, где y=f(x), а x «пробегает» всю область определения данной функции.

Подмножество координатной плоскости является графиком какой-либо функции, если оно имеет не более одной общей точки с любой прямой, параллельной оси Оу.

Пример. Является ли графиками функций фигуры, изображенные ниже?

Преимуществом графического задания является его наглядность. Сразу видно, как ведёт себя функция, где возрастает, где убывает. По графику сразу можно узнать некоторые важные характеристики функции.

Вообще, аналитический и графический способы задания функции идут рука об руку. Работа с формулой помогает построить график. А график частенько подсказывает решения, которые в формуле и не заметишь.

Почти любой ученик знает три способа задания функции, которые мы только что рассмотрели.

Попытаемся ответить на вопрос: "А существуют ли другие способы задания функции?"

Такой способ есть.

Функцию можно вполне однозначно задать словами.

Например, функцию у=2х можно задать следующим словесным описанием: каждому действительному значению аргумента х ставится в соответствие его удвоенное значение. Правило установлено, функция задана.

Более того, словесно можно задать функцию, которую формулой задать крайне затруднительно, а то и невозможно.

Например: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х. Например, если х=3, то у=3. Если х=257, то у=2+5+7=14. И так далее. Формулой это записать проблематично. А вот табличку легко составить.

Способ словесного описания - достаточно редко используемый способ. Но иногда встречается.

Если есть закон однозначного соответствия между х и у - значит, есть функция. Какой закон, в какой форме он выражен - формулой, табличкой, графиком, словами – сути дела не меняет.

Рассмотрим функции, области определения которых симметричны относительно начала координат, т.е. для любого х из области определения число (-х ) также принадлежит области определения. Среди таких функций выделяют четные и нечетные .

Определение. Функция f называется четной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является четной. Проверим это.



Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция четная. Ниже представлен график этой функции.

Определение. Функция f называется нечетной , если для любого х из ее области определения

Пример. Рассмотрим функцию

Она является нечетной. Проверим это.

Область определения вся числовая ось, а значит, она симметрична относительно точки (0;0).

Для любого х выполнены равенства

Таким образом, у нас выполняются оба условия, значит функция нечетная. Ниже представлен график этой функции.

Графики, изображенные на первом и третьем рисунках симметричны относительно оси ординат, а графики, изображенные на втором и четвертом рисункам симметричны относительно начала координат.

Какие из функций, графики которых изображены на рисунках являются четными, а какие нечетными?

Читайте также: