Старт в науке. Фракталы в окружающем нас мире Геометрические фракталы по-другому называют классическими, детерминированными или линейными. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменен

Ставропольская краевая открытая научная конференция школьников

Секция: математика

Название работы: Исследование особенностей фрактальных моделей для практического применения

9614524388, vkel -72@ mail . ru

Место выполнения работы : ст Григорополисская

МОУ СОШ №2, 8 класс.

Научный руководитель: Кузнецова Елена

Ивановна, учитель математики и информатики

МОУ СОШ № 2

ст. Григорополисская, 2018

Введение______________________________________________________________3-4стр.

Глава 1.История возникновения фракталов.__________________________________5-6стр.

Глава 2. Классификация фракталов._______________________________________6-10стр.

Геометрические фракталы

Алгебраические фракталы

Стохастические фракталы

Глава 3."Фрактальная геометрия природы"_________________________________11-13стр.

Глава 4. Применение фракталов__________________________________________13-15стр.

Глава 5 Практические работы____________________________________________16-24стр.

Заключение____________________________________________________________25.стр

Список литературы и интернет ресурсов____________________________________26 стр.

Введение

Математика, если на нее правильно посмотреть, отражает не только истину, но и несравненную красоту.

Бертранд Рассел

Слово “фрактал” - это что-то, о чем много людей говорит в наши дни, от ученых до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные изображения фракталов сегодня можно найти везде: от открыток, футболок до картинок на рабочем столе персонального компьютера. Итак, что это за цветные формы, которые мы видим вокруг?

Математика – древнейшая наука. Большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, многоугольник, сфера и т.д. Как оказалось многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических разнообразий, которое мы наблюдаем в мире растений и животных? Как представить всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела? Представить строение легких и почек, напоминающие по структуре деревья с ветвистой кроной?

Фракталы - подходящие средства для исследования поставленных вопросов. Нередко то, что мы видим в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько-то раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Для многих хаологов (ученых изучающих фракталы и хаос) – это не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной .

В своей работе я тоже решил «прикоснуться» к миру прекрасного и определил для себя…

Цель работы : создание объектов, образы которых весьма похожи на природные.

Методы исследования : сравнительный анализ, синтез, моделирование.

Задачи :

    знакомство с понятием, историей возникновения и исследованиями Б.Мандельброта, Г. Коха, В. Серпинского и др.;

    знакомство с различными видами фрактальных множеств;

    изучение научно-популярной литературы по данному вопросу, знакомство с

научными гипотезами;

    нахождение подтверждения теории фрактальности окружающего мира;

    изучение применения фракталов в других науках и на практике;

    проведение эксперимента по созданию собственных фрактальных изображений.

Основополагающий вопрос работы:

Показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Предмет исследования : Фрактальная геометрия.

Объект исследования : фракталы в математике и в реальном мире.

Гипотеза : Все, что существует в реальном мире, является фракталом.

Методы исследования : аналитический, поисковый.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Ожидаемые результаты: В ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.

Итогом работы будет создание компьютерной презентации, бюллетеня и буклета.

Глава 1.История возникновения

Бенуа Мандельброт

Понятие «фрактал» придумал Бенуа Мандельброт. Слово происходит от латинского «fractus», означающего «сломанный, разбитый».

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Для математических объектов, к которым оно относится, характерны чрезвычайно интересные свойства. В обычной геометрии линия имеет одно измерение, поверхность - два измерения, а пространственная фигура трехмерна. Фракталы же - это не линии и не поверхности, а, если можно это себе представить, нечто среднее. С ростом размеров возрастает и объем фрактала, но его размерность (показатель степени) - величина не целая, а дробная, а потому граница фрактальной фигуры не линия: при большом увеличении становится видно, что она размыта и состоит из спиралей и завитков, повторяющих в малом масштабе саму фигуру. Такая геометрическая регулярность называется масштабной инвариантностью или самоподобием. Она-то и определяет дробную размерность фрактальных фигур.

Рекурсивная (или фрактальная) геометрия идет на смену Евклидовой. Новая наука способна описать истинную природу тел и явлений. Евклидова геометрия имела дело только с искусственными, воображаемыми объектами, принадлежащими трем измерениям. В реальность их способно превратить только четвертое измерение.

В основном фракталы классифицируют по трём группам:

    Алгебраические фракталы

    Стохастические фракталы

    Геометрические фракталы

Рассмотрим подробнее каждую из них.

Глава 2. Классификация фракталов. Геометрические фракталы

Бенуа Мандельброт предложил модель фрактала, которая уже стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность при любых масштабах наблюдения. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (Рис.7), кривая Пeано (Рис.8), кривая Минковского.

Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д…

Предельная кривая и есть кривая Коха.


Снежинка Коха. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

Т
акже ещё одним несложным представителем геометрического фрактала является квадрат Серпинского. Строится он довольно таки просто: Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множесто, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Это самая крупная группа фракталов. Алгебраические фракталы получили свое название за то, что их строят, используя простые алгебраические формулы.

Получают их с помощью нелинейных процессов в n -мерных пространствах. Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные структуры.

В качестве примера рассмотрим множество Мандельброта. Строят его с помощью комплексных чисел.

Участок границы множества Мандельброта, увеличенный в 200 раз.

Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки, имеющие черный цвет). Точки, принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки, лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

П



ример другого алгебраического фрактала – множество Жюлиа. Существует 2 разновидности этого фрактала. Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество.

И
нтересный факт
, некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д.

Типичным представителем этой группы фракталов является «плазма».

Д

ля ее построения берется прямоугольник и для каждого его угла определяется цвет. Далее находится центральная точка прямоугольника и раскрашивается в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если посмотреть на этот фрактал в разрезе то мы увидим этот фрактал объемный, и имеет «шероховатость», как раз из-за этой «шероховатости» есть очень важное применение этого фрактала.

Допустим нужно описать форму горы. Обычные фигуры из Евклидовой геометрии тут не помогут, ведь они не учитывают рельеф поверхности. Но при совмещении обычной геометрии с фрактальной можно получить ту самую «шероховатость» горы.

Теперь поговорим о геометрических фракталах. .

Глава 3 "Фрактальная геометрия природы"

" Почему геометрию часто называют "холодной" и "сухой"? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева". (Бенуа Мандельброт "Фрактальная геометрия природы").

Красота фракталов двояка: она услаждает глаз, о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой бременских математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге тех же авторов "Красота фракталов".

Что же касается соответствия реальному миру, то фрактальная геометрия описывает весьма широкий класс природных процессов и явлений, и поэтому мы можем вслед за Б.Мандельбротом с полным правом говорить о фрактальной геометрии природы. Новые - фрактальные объекты обладают необычными свойствами. Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:


Морские раковины


Молнии восхищают своей красотой. Фракталы, созданные молнией не произвольны и не регулярны


Фрактальная форма подвида цветной капусты (Brassica cauliflora). Это особый вид является особенно симметричным фракталом.

Папоротник так же является хорошим примером фрактала среди флоры.


Павлины всем известны своим красочным опереньем, в котором спрятаны сплошные фракталы.


Лёд, морозные узоры на окнах это тоже фракталы


О
т увеличенного изображения листочка , до ветвей дерева - во всём можно обнаружить фракталы

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц? Едва ли.

Глава 4. Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

О
дни из наиболее мощных приложений фракталов лежат в компьютерной графике . Это фрактальное сжатие изображений.

В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных).

Т
акже фрактальную геометрию используют для проектировании антенных устройств . Впервые это было применено американским инженером Натаном Коэном, который жил тогда в центре Бостона, где была запрещена установка на зданиях внешних антенн. Также существуют множество гипотез по поводу применения фракталов – например, лимфатическая и кровеносная системы, лёгкие и многое другое тоже имеют фрактальные свойства.

Глава 5. Практические работы.

Сначала остановимся на фракталах «Ожерелье», «Победа» и «Квадрат».

Первое – «Ожерелье» (рис. 7). Инициатором данного фрактала является окружность. Эта окружность состоит из определенного числа таких же окружностей, но меньших размеров, а сама же она является одной из нескольких окружностей, представляющих собой такую же, но больших размеров. Так процесс образования бесконечен и его можно вести как в ту, так и в обратную сторону.

Второй фрактал – это «Победа» (рис.8). Такое название он получил потому, что внешне напоминает латинскую букву “V ”, то есть “victory ”-победа. Этот фрактал состоит из определенного числа маленьких “v ”, составляющих одну большую “V ”, причем в левой половине, которой маленькие ставятся так, чтобы их левые половины составляли одну прямую, правая часть строится так же. Каждая из этих “v ” строится таким же образом и продолжается это до бесконечности.

Третий фрактал – это «Квадрат» (рис. 9) . Каждая из его сторон состоит из одного ряда ячеек, по форме представляющих квадраты, стороны которых также представляют ряды ячеек и т.д.

Фрактал «Роза» (рис. 10), в силу внешнего сходства с данным цветком. В каждую окружность вписываются правильные шестиугольник, сторона которого равна радиусу описанной около него окружности.

Далее обратимся к правильному пятиугольнику, в котором проведём его диагонали. Затем в получившемся в при пересечении соответствующих отрезков пятиугольнике снова проведём диагонали. Продолжим данный процесс до бесконечности и получим фрактал «Пентаграмма» (рис. 12).

Эксперимент № 1 «Дерево»

Теперь, когда я понял что такое фрактал и как его строить, я попробовал создать свои собственные фрактальные изображения.

Для начала я создал фон для нашего будущего фрактала с разрешением 600 на 600. Дальше я нарисовал на этом фоне 3 линии - основу нашего будущего фрактала.


Итак, у меня получился полноценный фрактал! Основой этого фрактала является первые три линии, о которых я упоминал в начале исследовательской работы.

Фрактальное свойство - это мини ёлочки по бокам главной ёлки, у маленьких ёлок тоже есть свои маленькие ёлки и так до бесконечности. В этот раз нарисуем произвольные линии – основу нашего будущего фрактала.

П
осле большего количества повторений получается вот такая симпатичная ёлочка!

Эксперимент № 2

П
остроение фракталов методом рекурсии в среде PascalABC
.

Дерево Пифагора - разновидность фрактала, основанная на фигуре, известной как «Пифагоровы штаны». Если в классическом дереве Пифагора угол равен 45 градусам, то также можно построить и обобщённое дерево Пифагора при использовании других углов. Такое дерево часто называют обдуваемое ветром дерево Пифагора.

Если изображать только отрезки, соединяющие каким-либо образом выбранные "центры" треугольников, то получается обнаженное дерево Пифагора. Объединив описанные выше процедуры в одной программе, я получил фрактальный пейзаж.

Заключение

Данная работа является введением в мир фракталов. Я рассмотрел только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся.

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Вся окружающая нас природа состоит из них. Нельзя не отметить широкое применение фракталов в компьютерных играх, с помощью фракталов создаются множество спецэффектов, различных сказочных и невероятных картинок и т.д. Также с помощью фрактальной геометрии рисуются деревья, облака, берега и вся другая природа. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

В будущем я планирую научиться строить алгебраические фракталы, когда более подробно изучу комплексные числа. Также хочу попробовать построить свои фрактальные изображение в языке программирования Паскаль с помощью циклов.

Следует отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:

1. Сжатие изображений и информации

2. Сокрытие информации на изображении, в звуке,…

3. Шифрование данных с помощью фрактальных алгоритмов

4. Создание фрактальной музыки

5. Моделирование систем

В моей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хочу только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков. При подготовке данной работы нам было очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что очень часто возникает такое ощущение, что теоретические знания стоят в стороне от жизненной реальности.

Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

10. Список литературы

    Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

    Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995

    Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

    Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002.

    Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.

    Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993.

Интернет ресурсы

http://www.ghcube.com/fractals/determin.html

http://fractals.nsu.ru/fractals.chat.ru/

http://fractals.nsu.ru/animations.htm

http://www.cootey.com/fractals/index.html

http://fraktals.ucoz.ru/publ

http://sakva .narod .ru

http://rusnauka.narod.ru/lib/author/kosinov_n/12/

http://www.cnam.fr/fractals/

http://www.softlab.ntua.gr/mandel/

http://subscribe.ru/archive/job.education.maths/201005/06210524.html

Приложение

рис. 7.Фрактал «Ожерелье» Рис.8. Фрактал «Победа»


Рис.9.Фрактал «Квадрат» Рис. 10. Фрактал «Роза»


Рис. 12. Фрактал «Пентаграмма» фрактал «Черная дыра»


Муниципальное бюджетное образовательное учреждение

«Сиверская средняя общеобразовательная школа №3»

Исследовательская работа

по математике.

Выполнил работу

ученик 8-1 класса

Емелин Павел

Научный руководитель

учитель математики

Тупицына Наталья Алексеевна

п. Сиверский

2014 год

Математика вся пронизана красотой и гармонией,

Только эту красоту надо увидеть.

Б. Мандельброт

Введение____________________________________3-4стр.

Глава 1.история возникновения фракталов._______5-6стр.

Глава 2. Классификация фракталов._____________6-10стр.

Геометрические фракталы

Алгебраические фракталы

Стохастические фракталы

Глава 3."Фрактальная геометрия природы"______11-13стр.

Глава 4. Применение фракталов_______________13-15стр.

Глава 5 Практические работы__________________16-24стр.

Заключение_________________________________25.стр

Список литературы и интернет ресурсов________26стр.

Введение

Математика,

если на нее правильно посмотреть,

отражает не только истину,

но и несравненную красоту.

Бертранд Рассел

Слово “фрактал” - это что-то, о чем много людей говорит в наши дни, от ученых до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные изображения фракталов сегодня можно найти везде: от открыток, футболок до картинок на рабочем столе персонального компьютера. Итак, что это за цветные формы, которые мы видим вокруг?

Математика – древнейшая наука. Большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, многоугольник, сфера и т.д. Как оказалось многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических разнообразий, которое мы наблюдаем в мире растений и животных? Как представить всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела? Представить строение легких и почек, напоминающие по структуре деревья с ветвистой кроной?

Фракталы - подходящие средства для исследования поставленных вопросов. Нередко то, что мы видим в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько-то раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Изучение фракталов открывает замечательные возможности, как в исследовании бесконечного числа приложений, так и в области математики. Применение фракталов очень обширно! Ведь эти объекты настолько красивы, что их используют дизайнеры, художники, с помощью них в графике рисуются многие элементы деревья, облака, горы и т.д. А ведь фракталы используются даже как антенны во многих сотовых телефонах.

Для многих хаологов (ученых изучающих фракталы и хаос) – это не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной .

В своей работе я тоже решил «прикоснуться» к миру прекрасного и определил для себя…

Цель работы : создание объектов, образы которых весьма похожи на природные.

Методы исследования : сравнительный анализ, синтез, моделирование.

Задачи :

    знакомство с понятием, историей возникновения и исследованиями Б.Мандельброта,

Г. Коха, В. Серпинского и др.;

    знакомство с различными видами фрактальных множеств;

    изучение научно-популярной литературы по данному вопросу, знакомство с

научными гипотезами;

    нахождение подтверждения теории фрактальности окружающего мира;

    изучение применения фракталов в других науках и на практике;

    проведение эксперимента по созданию собственных фрактальных изображений.

Основополагающий вопрос работы:

Показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Предмет исследования : Фрактальная геометрия.

Объект исследования : фракталы в математике и в реальном мире.

Гипотеза : Все, что существует в реальном мире, является фракталом.

Методы исследования : аналитический, поисковый.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Ожидаемые результаты: В ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.

Итогом работы будет создание компьютерной презентации, бюллетеня и буклета.

Глава 1.История возникновения

Бенуа Мандельброт

Понятие «фрактал» придумал Бенуа Мандельброт. Слово происходит от латинского «fractus», означающего «сломанный, разбитый».

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Для математических объектов, к которым оно относится, характерны чрезвычайно интересные свойства. В обычной геометрии линия имеет одно измерение, поверхность - два измерения, а пространственная фигура трехмерна. Фракталы же - это не линии и не поверхности, а, если можно это себе представить, нечто среднее. С ростом размеров возрастает и объем фрактала, но его размерность (показатель степени) - величина не целая, а дробная, а потому граница фрактальной фигуры не линия: при большом увеличении становится видно, что она размыта и состоит из спиралей и завитков, повторяющих в малом масштабе саму фигуру. Такая геометрическая регулярность называется масштабной инвариантностью или самоподобием. Она-то и определяет дробную размерность фрактальных фигур.

До появления фрактальной геометрии наука имела дело с системами, заключенными в трех пространственных измерениях. Благодаря Эйнштейну стало понятно, что трехмерное пространство - только модель действительности, а не сама действительность. Фактически наш мир расположен в четырехмерном пространственно-временном континууме.
Благодаря Мандельброту стало понятно, как выглядит четырехмерное пространство, образно выражаясь, фрактальное лицо Хаоса. Бенуа Мандельброт обнаружил, что четвертое измерение включает в себя не только первые три измерения, но и (это очень важно!) интервалы между ними.

Рекурсивная (или фрактальная) геометрия идет на смену Евклидовой. Новая наука способна описать истинную природу тел и явлений. Евклидова геометрия имела дело только с искусственными, воображаемыми объектами, принадлежащими трем измерениям. В реальность их способно превратить только четвертое измерение.

Жидкость, газ, твердое тело - три привычных физических состояния вещества, существующего в трехмерном мире. Но какова размерность клуба дыма, облака, точнее, их границ, непрерывно размываемых турбулентным движением воздуха?

В основном фракталы классифицируют по трём группам:

    Алгебраические фракталы

    Стохастические фракталы

    Геометрические фракталы

Рассмотрим подробнее каждую из них.

Глава 2. Классификация фракталов

Геометрические фракталы

Бенуа Мандельброт предложил модель фрактала, которая уже стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность при любых масштабах наблюдения. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (Рис.7), кривая Пeано (Рис.8), кривая Минковского.

В начале ХХ века математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д…

Предельная кривая и есть кривая Коха.

Снежинка Коха. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

Также ещё одним несложным представителем геометрического фрактала является квадрат Серпинского. Строится он довольно таки просто: Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множесто, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Это самая крупная группа фракталов. Алгебраические фракталы получили свое название за то, что их строят, используя простые алгебраические формулы.

Получают их с помощью нелинейных процессов в n -мерных пространствах. Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом, фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные структуры.

В качестве примера рассмотрим множество Мандельброта. Строят его с помощью комплексных чисел.

Участок границы множества Мандельброта, увеличенный в 200 раз.

Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки, имеющие черный цвет). Точки, принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки, лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

Пример другого алгебраического фрактала – множество Жюлиа. Существует 2 разновидности этого фрактала. Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество.

Интересный факт , некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д.

Типичным представителем этой группы фракталов является «плазма».

Для ее построения берется прямоугольник и для каждого его угла определяется цвет. Далее находится центральная точка прямоугольника и раскрашивается в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если же предположить, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладывается текстура и фотореалистичные горы готовы

Если посмотреть на этот фрактал в разрезе то мы увидим этот фрактал объемный, и имеет «шероховатость», как раз из-за этой «шероховатости» есть очень важное применение этого фрактала.

Допустим нужно описать форму горы. Обычные фигуры из Евклидовой геометрии тут не помогут, ведь они не учитывают рельеф поверхности. Но при совмещении обычной геометрии с фрактальной можно получить ту самую «шероховатость» горы. На обычный конус нужно наложить плазму и мы получим рельеф горы. Такие операции можно выполнять со многими другими объектами в природе, благодаря стохастическим фракталам можно описать саму природу.

Теперь поговорим о геометрических фракталах.

.

Глава 3 "Фрактальная геометрия природы"

" Почему геометрию часто называют "холодной" и "сухой"? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. В более общем плане я утверждаю, что многие объекты в Природе настолько иррегулярные и фрагментированы, что по сравнению с Евклидом - термин, который в этой работе означает всю стандартную геометрию, - Природа обладает не просто большей сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно".

(Бенуа Мандельброт "Фрактальная геометрия природы").

Красота фракталов двояка: она услаждает глаз, о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой бременских математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге тех же авторов "Красота фракталов". Но существует и другой, более абстрактный или возвышенный, аспект красоты фракталов, открытый, по словам Р. Фейнмана, только умственному взору теоретика, в этом смысле фракталы прекрасны красотой трудной математической задачи. Бенуа Мандельброт указал современникам (и, надо полагать, потомкам) на досадный пробел в "Началах" Евклида, по которому, не замечая упущения, почти два тысячелетия человечества постигало геометрию окружающего мира и училось математической строгости изложения. Разумеется, оба аспекта красоты фракталов тесно взаимосвязаны и не исключают, а взаимно дополняют друг друга, хотя каждый из них самодостаточен.

Фрактальная геометрия природы по Мандельброту - самая настоящая геометрия, удовлетворяющая определению геометрии, предложенному в "Эрлангенскрй программе" Ф. Клейна. Дело в том, что до появления неевклидовой геометрии Н.И. Лобачевского - Л. Больяи, существовала только одна геометрия - та, которая была изложена в "Началах", и вопрос о том, что такое геометрия и какая из геометрий является геометрией реального мира, не возникал, да и не мог возникнуть. Но с появлением еще одной геометрии возник вопрос, что такое геометрия вообще, и какая из множества геометрий отвечает реальному миру. По Ф.Клейну, геометрия занимается изучением таких свойств объектов, которые инвариантны относительно преобразований: евклидова - инвариантов группы движений (преобразований, не изменяющих расстояния между любыми двумя точками, т.е. представляющих суперпозицию параллельных переносов и вращений с изменением или без изменения ориентации), геометрия Лобачевского-Больяи - инвариантов группы Лоренца. Фрактальная геометрия занимается изучением инвариантов группы самоаффинных преобразований, т.е. свойств, выражаемых степенными законами.

Что же касается соответствия реальному миру, то фрактальная геометрия описывает весьма широкий класс природных процессов и явлений, и поэтому мы можем вслед за Б.Мандельбротом с полным правом говорить о фрактальной геометрии природы. Новые - фрактальные объекты обладают необычными свойствами. Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:

Морские раковины

Молнии восхищают своей красотой. Фракталы, созданные молнией не произвольны и не регулярны

Фрактальная форма подвида цветной капусты (Brassica cauliflora). Это особый вид является особенно симметричным фракталом.

Папоротник так же является хорошим примером фрактала среди флоры.

Павлины всем известны своим красочным опереньем, в котором спрятаны сплошные фракталы.

Лёд, морозные узоры на окнах это тоже фракталы

От увеличенного изображения листочка , до ветвей дерева - во всём можно обнаружить фракталы

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц? Едва ли.

Глава 4. Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике . Это фрактальное сжатие изображений. Современная физика и механика только начинают изучать поведение фрактальных объектов.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации (плохого качества изображения – большими квадратами). Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Компанией Iterated разработан новый формат изображений "Sting", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.

В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.

Также фрактальную геометрию используют для проектировании антенных устройств . Впервые это было применено американским инженером Натаном Коэном, который жил тогда в центре Бостона, где была запрещена установка на зданиях внешних антенн. Коэн вырезал из алюминиевой фольги фигуру в форме кривой Коха и затем наклеил ее на лист бумаги, а затем присоединил к приемнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы такой антенны не изучены до сих пор, это не помешало Коэну обосновать собственную компанию и наладить их серийный выпуск. В данный момент американская фирма “Fractal Antenna System”разработала антенну нового типа. Теперь можно отказаться от использования в мобильных телефонах торчащих наружных антенн. Так называемая фрактальная антенна располагается прямо на основной плате внутри аппарата.

Также существуют множество гипотез по поводу применения фракталов – например, лимфатическая и кровеносная системы, лёгкие и многое другое тоже имеют фрактальные свойства.

Глава 5. Практические работы.

Сначала остановимся на фракталах «Ожерелье», «Победа» и «Квадрат».

Первое – «Ожерелье» (рис. 7). Инициатором данного фрактала является окружность. Эта окружность состоит из определенного числа таких же окружностей, но меньших размеров, а сама же она является одной из нескольких окружностей, представляющих собой такую же, но больших размеров. Так процесс образования бесконечен и его можно вести как в ту, так и в обратную сторону. Т.е. фигуру можно увеличивать, взяв всего одну маленькую дугу, а можно уменьшать, рассматривая построение ее из более мелких.

рис. 7.

Фрактал «Ожерелье»

Второй фрактал – это «Победа» (рис.8). Такое название он получил потому, что внешне напоминает латинскую букву “V ”, то есть “victory ”-победа. Этот фрактал состоит из определенного числа маленьких “v ”, составляющих одну большую “V ”, причем в левой половине, которой маленькие ставятся так, чтобы их левые половины составляли одну прямую, правая часть строится так же. Каждая из этих “v ” строится таким же образом и продолжается это до бесконечности.

Рис.8. Фрактал «Победа»

Третий фрактал – это «Квадрат» (рис. 9) . Каждая из его сторон состоит из одного ряда ячеек, по форме представляющих квадраты, стороны которых также представляют ряды ячеек и т.д.

Рис.9.Фрактал «Квадрат»

Фрактал был назван «Роза» (рис. 10), в силу внешнего сходства с данным цветком. Построение фрактала связано с построением ряда концентрических окружностей, радиус которых изменяется пропорционально заданному отношению (в данном случае R м / R б = ¾ = 0,75.). После чего в каждую окружность вписываются правильные шестиугольник, сторона которого равна радиусу описанной около него окружности.

Рис. 11. Фрактал «Роза * »

Далее обратимся к правильному пятиугольнику, в котором проведём его диагонали. Затем в получившемся в при пересечении соответствующих отрезков пятиугольнике снова проведём диагонали. Продолжим данный процесс до бесконечности и получим фрактал «Пентаграмма» (рис. 12).

Введём элемент творчества и наш фрактал примет вид более наглядного объекта (рис. 13).

Рис. 12. Фрактал «Пентаграмма».

Рис. 13. Фрактал «Пентаграмма * »

Рис. 14 фрактал «Черная дыра»

Эксперимент № 1 «Дерево»

Теперь, когда я понял что такое фрактал и как его строить, я попробовал создать свои собственные фрактальные изображения. В программе Adobe Photoshop я создал небольшую подпрограмму или action , особенность этого экшена заключается в том, что он повторяет действия, которые я проделываю, и так у меня получается фрактал.

Для начала я создал фон для нашего будущего фрактала с разрешением 600 на 600. Дальше я нарисовал на этом фоне 3 линии - основу нашего будущего фрактала.

С ледующим шагом будет запись скрипта.

продублируем слой (layer > duplicate ) и изменим тип смешивания на "Screen " .

Назовём его "fr1 ". Скопируем этот слой ("fr1 ") еще 2 раза.

Теперь надо переключиться на последний слой (fr3 ) и дважды слить его с предыдущим (Ctrl+E ). Уменьшить яркость слоя (Image > Ajustments > Brightness/Contrast , яркость установить 50% ). Опять слить с предыдущим слоем и обрезать края всего рисунка, чтобы убрать невидимые части. я копировал это изображение, уменьшал его и вставлял поверх другого, меняя цвет.

Последним шагом я копировал это изображение и вставлял его с уменьшением и поворотом. Вот что получилось в конечном результате.

Заключение

Данная работа является введением в мир фракталов. Мы рассмотрели только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся.

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Вся окружающая нас природа состоит из них. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств. Фракталы очень сильно облегчают рисование компьютерной графики, с помощью фракталов создаются множество спецэффектов, различных сказочных и невероятных картинок и т.д. Также с помощью фрактальной геометрии рисуются деревья, облака, берега и вся другая природа. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

В будущем я планирую научиться строить алгебраические фракталы, когда более подробно изучу комплексные числа. Также хочу попробовать построить свои фрактальные изображение в языке программирования Паскаль с помощью циклов.

Следует отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:

1. Сжатие изображений и информации

2. Сокрытие информации на изображении, в звуке,…

3. Шифрование данных с помощью фрактальных алгоритмов

4. Создание фрактальной музыки

5. Моделирование систем

В нашей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хотим только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков, движение цен на бирже и развитие общества и семьи. Может быть, в первое время данное увлечение фракталами было даже слишком бурным и попытки все объяснять с помощью теории фракталов были неоправданными. Но, без сомнения, данная теория имеет право на существование, и мы сожалеем, что в последнее время она как-то забылась и осталась уделом избранных. При подготовке данной работы нам было очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что очень часто возникает такое ощущение, что теоретические знания стоят в стороне от жизненной реальности.

Таким образом, концепция фракталов становится не только частью “чистой” науки, но и элементом общечеловеческой культуры. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

10. Список литературы

    Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

    Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995

    Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

    Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002.

    Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.

    Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993.

Интернет ресурсы

http://www.ghcube.com/fractals/determin.html

http://fractals.nsu.ru/fractals.chat.ru/

http://fractals.nsu.ru/animations.htm

http://www.cootey.com/fractals/index.html

http://fraktals.ucoz.ru/publ

http://sakva .narod .ru

http://rusnauka.narod.ru/lib/author/kosinov_n/12/

http://www.cnam.fr/fractals/

http://www.softlab.ntua.gr/mandel/

http://subscribe.ru/archive/job.education.maths/201005/06210524.html


Фракталы в окружающем нас мире.

Выполнила: ученица 9 класса

МБОУ Кировская СОШ

Литовченко Екатерина Николаевна.
Руководитель: учитель математики

МБОУ Кировская СОШ

Качула Наталья Николаевна.

    Введение……………………………………………………………… 3

      Объект исследования.

      Предметы исследования.

      Гипотезы.

      Цели, задачи и методы исследования.

    Исследовательская часть. …………………………………………. 7

      Нахождение связи между фракталами и треугольником Паскаля.

      Нахождение связи между фракталами и золотым сечением.

      Нахождение связи между фракталами и фигурными числами.

      Нахождение связи между фракталами и литературными произведениями.

3. Практическое применение фракталов…………………………….. 13

4. Заключение………………………………………………………….. 15

4.1 Результаты исследования.

5. Библиография……………………………………………………….. 16

    Введение.

      Объект исследования: Фракталы .

Когда большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, коническое сечение, многоугольник, сфера, квадратичная поверхность, а также их комбинациями. К примеру, что может быть красивее утверждения о том, что планеты в нашей солнечной системе движутся вокруг солнца по эллиптическим орбитам?

Однако многие природные системы настолько сложны и нерегулярны, что использование только знакомых объектов классической геометрии для их моделирования представляется безнадежным. Как к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических конфигураций, которое мы наблюдаем в мире растений и животных? Представьте себе всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела. Представьте, как хитроумно устроены легкие и почки, напоминающие по структуре деревья с ветвистой кроной.

Столь же сложной и нерегулярной может быть и динамика реальных природных систем. Как подступиться к моделированию каскадных водопадов или турбулентных процессов, определяющих погоду?

Фракталы и математический хаос - подходящие средства для исследования поставленных вопросов. Термин фрактал относится к некоторой статичной геометрической конфигурации, такой как мгновенный снимок водопада. Хаос - термин динамики, используемый для описания явлений, подобных турбулентному поведению погоды. Нередко то, что мы наблюдаем в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды - вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Во многих работах по фракталам самоподобие используется в качестве определяющего свойства. Следуя Бенуа Мадельброту, мы принимаем точку зрения, согласно которой фракталы должны определяться в терминах фрактальной (дробной) размерности. Отсюда и происхождение слова фрактал (от лат. fractus - дробный).

Понятие дробной размерности представляет собой сложную концепцию, которая излагается в несколько этапов. Прямая - это одномерный объект, а плоскость - двумерный. Если хорошенько перекрутив прямую и плоскость, можно повысить размерность полученной конфигурации; при этом новая размерность обычно будет дробной в некотором смысле, который нам предстоит уточнить. Связь дробной размерности и самоподобия состоит в том, что с помощью самоподобия можно сконструировать множество дробной размерности наиболее простым образом. Даже в случае гораздо более сложных фракталов, таких как граница множества Мандельброта, когда чистое самоподобие отсутствует, имеется почти полное повторение базовой формы во все более и более уменьшенном виде.

Слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура, обладает какими- либо из перечисленных ниже свойств:

    Теоретическая многомерность (можно продолжать в любом количестве измерений).

    Если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Фрагмент фрактала же в крупном масштабе будет таким же, как и в любом другом масштабе. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной, каждый уровень подобен целому

    Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

    Обладает дробной размерностью.

Виды фракталов: алгебраические, геометрические, стохастические.

Алгебраические фракталы – самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах, например, множества Мандельброта и Жюлиа.

Вторая группа фракталов – геометрические фракталы. История фракталов началась с геометрических фракталов, которые исследовались математиками в XIX веке. Фракталы этого класса - самые наглядные, потому что в них сразу видна самоподобность. Этот тип фракталов получается путем простых геометрических построений. При построении этих фракталов обычно берется набор отрезков, на основании которых будет строиться фрактал. Далее к этому набору применяют набор правил, который преобразует их в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если представить бесконечное количество подобных операций, получается геометрических фрактал.

На рисунке справа изображен треугольник Серпинского – геометрический фрактал, который образуется следующим образом: на первом шаге мы видим обычный треугольник, на следующем шаге соединяются середины сторон, образуя 4 треугольника, один из которых перевернутый. Далее мы повторяем проделанную операцию со всеми треугольниками, кроме перевернутых, и так до бесконечности.

Примеры геометрических фракталов:

1.1 Звезда Коха

В начале ХХ века математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом аппроксимировала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую. Мы не будем вдаваться в объяснения правила ее построения, а просто приведем ее изображение, из которого все станет ясно. Одно важное свойство, которым обладает граница снежинки Коха ….. ее бесконечная длина. Это может показаться удивительным, потому что мы привыкли иметь дело с кривыми из курса математического анализа. Обычно гладкие или хотя бы кусочно-гладкие кривые всегда имеют конечную длину (в чем можно убедиться интегрированием). Мандельброт в этой связи опубликовал ряд увлекательных работ, в которых исследуется вопрос об измерении длины береговой линии Великобритании. В качестве модели он использовал фрактальную кривую, напоминающую границу снежинки за тем исключением, что в нее введен элемент случайности, учитывающий случайность в природе. В результате оказалось, что кривая, описывающая береговую линию, имеет бесконечную длину.

Губка Менгера



Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. .

      Предметы исследования

      1. Треугольник Паскаля.

У
стройство треугольника Паскаля – боковые стороны единицы, каждое число равно сумме двух расположенных над ним. Треугольник можно продолжать неограниченно.

Треугольник Паскаля служит для вычисления коэффициентов разложения выражений вида (x+1) n . Начав с треугольника из единиц, вычисляют значения на каждом последовательном уровне путём сложения соседних чисел; последней ставят единицу. Таким образом, можно определить, например, что (x + 1) 4 = 1x 4 + 4x 3 + 6x 2 + 4x + 1x 0 .

        Фигурные числа.

Пифагор впервые, в VI до нашей эры, обратил внимание на то, что, помогая себе при счете камушками, люди иногда выстраивают камни в правильные фигуры. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить прямоугольником, и только простые числа не могут быть «прямоугольниками».

    Линейные числа - числа, не разлагающиеся на сомножители, то есть их ряд совпадает с рядом простых чисел, дополненным единицей: (1,2,3,5,7,11,13,17,19,23,...). Это простые числа.

    Плоские числа - числа, представимые в виде произведения двух сомножителей (4,6,8,9,10,12,14,15,...)

    Телесные числа - числа, выражаемые произведением трёх сомножителей (8,12,18,20,24,27,28,...) и т. д.

    Многоугольные числа:

    Треугольные числа: (1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...)

    Квадратные числа представляют собой произведение двух одинаковых чисел, то есть являются полными квадратами: (1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ..., n2, ...)

    Пятиугольные числа: (1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...)

    Шестиугольные числа (1, 6, 15, 28, 45, ...)

        Золотое сечение..

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление, число Фидия) - деление непрерывной величины на части в таком отношении, при котором большая часть так относится к меньшей, как вся величина к большей. На рисунке слева точка С производит золотое сечение отрезка АВ, если: АС:АВ = СВ:АС.

Эту пропорцию принято обозначать греческой буквой . Оно равно 1,618. Из этой пропорции видно, что при золотом сечении длина большего отрезка есть среднее геометрическое длин всего отрезка и его меньшей части. Части золотого сечения составляют приблизительно 62% и 38% всего отрезка. С числом связана последовательность целых чисел Фибоначчи : 1, 1, 2, 3, 5, 8, 13, 21, ... , часто встречающаяся в природе. Она порождена рекуррентным соотношением F n+2 =F n+1 +F n с начальными условиями F 1 =F 2 = 1.

Древнейшим литературным памятником, в котором встречается деление отрезка в отношении золотого сечения, являются «Начала» Евклида. Уже во второй книге «Начал» Евклид строит золотое сечение, а в дальнейшем применяет его для построения некоторых правильных многоугольников и многогранников.

      Гипотезы:

Существует ли связь между фракталами и

    треугольником Паскаля.

    золотым сечением.

    фигурными числами.

    литературными произведениями

1.4 Цель работы:

1. Ознакомить слушателей с новой ветвью математики - фракталами.

2. Опровергнуть или доказать гипотезы, поставленные в работе.

      Задачи исследования:

    Проработать и проанализировать литературу по теме исследования.

    Собрать коллекцию фрактальных образов для первичного ознакомления с миром фракталов.

    Установить взаимосвязи между треугольником Паскаля, литературными произведениями, фигурными числами и золотым сечением.

      Методы исследования:

Теоретический (изучение и теоретический анализ научной и специальной литературы; обобщение опыта);

Практический (составление расчетов, обобщение результатов).

    Исследовательская часть.

2.1 Нахождение связи между фракталами и треугольником Паскаля.

Треугольник Паскаля Треугольник Серпинского

При выделении нечетных чисел в треугольнике Паскаля получается треугольник Серпинского. Узор демонстрирует свойство коэффициентов, применяемое при «арифметизации» компьютерных программ, которая преобразует их в алгебраические уравнения.

2.1 Нахождение связи между фракталами и золотым сечением.

Размерность фракталов.

Если смотреть с математической точки зрения, то размерность определяется следующим образом.

Для одномерных объектов - увеличение в 2 раза линейных размеров приводит к увеличению размеров (в данном случае длины) в 2 раза, т.е. в 2 1 .

Для двухмерных объектов увеличение в 2 раза линейных размеров приводит к увеличению размера (площади) в 4 раза, т.е. в 2 2 . Приведем пример. Дан круг радиуса r, тогда S= π r 2 .

Если увеличить в 2 раза радиус, то: S1 = π(2r) 2 ; S 1 = 4πr 2 .

Для трехмерных объектов увеличение в 2 раза линейных размеров приводит к увеличению объема в 8 раз, т.е. 2 3 .

Если мы возьмем куб, то V=а 3 , V"=(2а) 3 =8а; V"/V= 8.

Однако природа не всегда подчиняется этим законам. Попробуем рассмотреть размерность фрактальных объектов на простом примере.

Представим себе, что муха хочет сесть на клубок шерсти. Когда она смотрит на него издалека, то видит только точку, размерность которой 0. Подлетая ближе, она видит сначала круг, его размерность 2, а затем шар – размерность 3. Когда муха сядет на клубок, она шара уже не увидит, а рассмотрит ворсинки, нитки, пустоты, т.е. объект с дробной размерностью.

Размерность объекта (показатель степени) показывает, по какому закону растет его внутренняя область. Аналогичным образом с ростом размера возрастает «объем фрактала». Ученые пришли к выводу, что фрактал - это множество с дробной размерностью.

Фракталы как математические объекты возникли вследствие потребностей научного познания мира в адекватном теоретическом описании все более сложных природных систем (таких, например, как горный хребет, береговая линия, крона дерева, каскадный водопад, турбулентный поток воздуха в атмосфере и т.п.) и, в конечном счете, в математическом моделировании природы в целом. А золотое сечение, как известно, представляет собой одно из наиболее ярких и устойчивых проявлений гармонии природы. Поэтому вполне возможно выявить взаимосвязь вышеупомянутых объектов, т.е. обнаружить золотое сечение в теории фракталов.

Напомним, что золотое сечение определяется выражением
(*) и является единственным положительным корнем квадратного уравнения
.

С золотым сечением тесно связаны числа Фибоначчи 1,1,2,3,5,8,13,21,…, каждое из которых представляет собой сумму двух предыдущих. Действительно, величина является пределом ряда, составленного из отношений соседних чисел Фибоначчи:
,

а величина– пределом ряда, составленного из отношений чисел Фибоначчи, взятых через одно:

Фракталом же называется структура, состоящая из частей, подобных целому. Согласно другому определению, фрактал представляет собой геометрический объект с дробной (нецелой) размерностью. Кроме того, фрактал всегда возникает в результате бесконечной последовательности однотипных геометрических операций по его построению, т.е. является следствием предельного перехода, что роднит его с золотым сечением, которое тоже представляет собой предел бесконечного числового ряда. Наконец, размерность фрактала, как правило, является иррациональным числом (как и золотое сечение).

В свете всего вышесказанного отнюдь не удивительным выглядит обнаружение того факта, что размерности многих классических фракталов с той или иной степенью точности могут быть выражены через золотое сечение. Так, например, соотношения для размерностей снежинки Кох d СК =1,2618595… и губки Менгера d ГМ =2,7268330… , с учетом (*) могут быть записаны в виде
и
.

Причем, погрешность первого выражения составляет всего лишь 0,004%, а второго выражения – 0,1%, а с учетом элементарного соотношения 10=2·5 следует, что величины d СК и d ГМ представляют собой комбинации золотого сечения и чисел Фибоначчи.

Размерности ковра Серпинского d КС =1,5849625… и пыли Кантора d ПК =0,6309297…тоже можно считать близкими по значению к золотому сечению:
и
. Погрешность этих выражений равна 2%.

Размерность широко применяемого в физических приложениях теории фракталов (например, при исследовании тепловой конвекции) неравномерного (двухмасштабного) множества Кантора (длины образующих отрезков которого –
и
– относятся друг к другу как числа Фибоначчи:
) , а d МК =0,6110… отличается от величины
лишь на 1%.

Таким образом, золотое сечение и фракталы взаимосвязаны.

2.2 Нахождение связи между фракталами и фигурными числами .

Рассмотрим каждую группу чисел.

Первое число – 1. Следующее число – 3. Оно получается прибавлением к предыдущему числу, 1, двух точек, чтобы искомая фигура стала треугольником. На третьем шаге мы добавляем три точки, сохраняя фигуру треугольник. На последующих шагах добавляется n точек, где n – порядковый номер треугольного числа. Каждое число получается добавлением к предыдущему определенного количества точек. Из этого свойства получилась рекуррентная формула для треугольных чисел: t n = n + t n -1 .

Первое число – 1. Следующее число – 4. Оно получается прибавлением 3 точек к предыдущему числу в виде прямого угла, чтобы получился квадрат. Формула для квадратных чисел очень проста, она выходит из названия этой группы чисел: g n = n 2 . Но также, кроме этой формулы, можно вывести рекуррентную формулу для квадратных чисел. Для этого рассмотрим первые пять квадратных чисел:

g n = g n-1 +2n-1

2 = 4 = 1+3 = 1+2·2-1

g 3 = 9 = 4+5 = 4+2·3-1

g 4 = 16 = 9+7 = 9+2·4-1

g 5 = 25 = 16+9 = 16+2·5-1

Первое число – 1. Следующее число – 5. Оно получается прибавлением четырех точек, таким образом, получившаяся фигура принимает форму пятиугольника. Одна сторона такого пятиугольника содержит 2 точки. На следующем шаге на одной стороне будет 3 точки, общее количество точек – 12. Попробуем вывести формулу для вычисления пятиугольных чисел. Первые пять пятиугольных чисел: 1, 5, 12, 22, 35. Они образуются следующим образом:

f 2 = 5 = 1+4 = 1+3·2-2

f n = f n-1 +3n-2

3 = 12 = 5+7 = 5+3·3-2

f 4 = 22 = 12+10 = 12+3·4-2

f 5 = 35 = 22+13 = 22+3·5-2

Первое число – 1. Второе – 6. Фигура выглядит как шестиугольник со стороной в 2 точки. На третьем шаге уже 15 точек выстраиваются в виде шестиугольника со стороной 3 точки. Выведем рекуррентную формулу:

u n = u n-1 +4n-3

2 = 6=1+4·2-3

u 3 = 15 = 6+4·3-3

u 4 = 28 = 15+4·4-3

u 5 = 45 = 28+4·5-3

Если посмотреть внимательнее, то можно заметить связь между всеми рекуррентными формулами.

Для треугольных чисел: t n = t n -1 + n = t n -1 +1 n -0

Для квадратных чисел: g n = g n -1 +2 n -1

Для пятиугольных чисел: f n = f n -1 +3 n -2

Для шестиугольных чисел: u n = u n -1 +4 n -3

Мы видим, что фигурные числа построены на повторяемости: это хорошо видно на рекуррентных формулах. Можно смело утверждать, что фигурные числа в своей основе имеют фрактальную структуру.

2.3 Нахождение связи между фракталами и литературными произведениями.

Рассмотрим фрактал именно как произведение искусства, причем характеризующееся двумя основными характеристиками: 1) часть его неким образом подобна целому (в идеале, эта последовательность подобий распространяется на бесконечность, хотя никто никогда не видел действительно бесконечной последовательности итераций, строящих снежинку Коха; 2) его восприятие происходит по последовательности вложенных уровней. Заметим, что очарование фрактала как раз и возникает на пути следования по этой завораживающей и головокружительной системе уровней, возвращение с которой не гарантировано.

Как же можно создать бесконечный текст? Этим вопросом задавался герой рассказа Х.-Л.Борхеса «Сад расходящихся тропок»: «…я спрашивал себя, как может книга быть бесконечной. В голову не приходит ничего, кроме цикличного, идущего по кругу тома, тома, в котором последняя страница повторяет первую, что и позволяет ему продолжаться сколько угодно».

Посмотрим, какие еще решения могут существовать.

Самыми простым бесконечным текстом будет текст из бесконечного количества дублирующихся элементов, или куплетов, повторяющейся частью которого является его «хвост» – тот же текст с любым количеством отброшенных начальных куплетов. Схематически такой текст можно изобразить в виде неразветвляющегося дерева или периодической последовательности повторяющихся куплетов. Единица текста – фраза, строфа или рассказ, начинается, развивается и заканчивается, возвращаясь в исходную точку, точку перехода к следующей единице текста, повторяющей исходную. Такой текст можно уподобить бесконечной периодической дроби: 0,33333…, ее еще можно записать как 0,(3). Видно, что отсечение «головы» – любого количества начальных единиц, ничего не изменит, и «хвост» будет в точности совпадать с целым текстом.

Неразветвляющееся бесконечное дерево тождественно самому себе с любого куплета.

Среди таких бесконечных произведений – стихи для детей или народные песенки, как, например, стишок о попе и его собаке из русской народной поэзии, или стихотворение М.Яснова «Чучело-мяучело», повествующее о котенке, который поет о котенке, который поет о котенке. Или, самое короткое: «У попа был двор, на дворе был кол, на колу мочало – не начать ли сказочку сначала?...У попа был двор...»

Еду я и вижу мост, под мостом ворона мокнет,
Взял ворону я за хвост, положил ее на мост, пусть ворона сохнет.
Еду я и вижу мост, на мосту ворона сохнет,
Взял ворону я за хвост, положил ее под мост, пусть ворона мокнет…

В отличие от бесконечных куплетов, фрагменты фракталов Мандельброта все же не тождественны, а подобны друг другу, и это качество и придает им завораживающее очарование. Поэтому в изучении литературных фракталов встает задача поиска подобности, сходства (а не тождественности) элементов текста.

В случае бесконечных куплетов замена тождества на подобие была осуществлена различными способами. Можно привести, по крайней мере, две возможности: 1) создание стихов с вариациями, 2) тексты с наращениями.

Стихи с вариациями – это, например, запущенная в оборот С.Никитиным и ставшая народной песенка «У Пегги жил веселый гусь», в которой варьируются Пеггины приживалы и их привычки.

У Пегги жил веселый гусь,

Он знал все песни наизусть.

Ах, до чего веселый гусь!

Спляшем, Пегги, спляшем!

У Пегги жил смешной щенок,

Он танцевать под дудку мог.

Ах, до чего смешной щенок!

Спляшем, Пегги, спляшем!

У Пегги стройный жил жираф,

Он элегантен был, как шкаф,

Вот это стройный был жираф!

Спляшем, Пегги, спляшем!

У Пегги жил смешной пингвин,

Он различал все марки вин,

Ах, до чего смешной пингвин!

Спляшем, Пегги, спляшем!

У Пегги жил веселый слон,

Он скушал синхрофазотрон,

Ну до чего веселый слон,

Спляшем, Пегги, спляшем!..

Сочинено уже если не бесконечное, то довольно большое число куплетов: утверждают, что кассета «Песни нашего века» вышла с двумястами вариациями песенки, и, вероятно, число это продолжает расти. Бесконечность тождественных куплетов здесь пытаются преодолеть за счет сотворчества, детского, наивного и забавного.

Еще одна возможность кроется в текстах с «приращениями». Таковы известные нам с детства сказки о репке или о колобке, в каждом эпизоде которых количество персонажей увеличивается:

«Теремок»


Муха-горюха.
Муха-горюха, комар-пискун.
Муха-горюха, комар-пискун, мышка-норушка.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик-попрыгайчик.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик- попрыгайчик, лисичка-сестричка.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик- попрыгайчик, лисичка-сестричка, волчище-серый хвостище.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик- попрыгайчик, лисичка-сестричка, волчище-серый хвостище, медведь-всех давишь.

Такие тексты имеют структуру «елочки» или «матрешки», у которых каждый уровень повторяет предыдущий с увеличением размера изображения.

Поэтическое произведение, в котором каждый куплет может быть прочитан независимо, как отдельный «этаж» елочки, а также вместе, составляя текст, развивающийся от Одного до Другого, и далее к Природе, Миру и Вселенной, создан Т.Васильевой:

Теперь, я думаю, можно сделать вывод, что существуют литературные произведения, обладающие фрактальной структурой.

3. Практическое применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

КОМПЬЮТЕРНЫЕ СИСТЕМЫ

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами (такими как jpeg или gif). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

МЕХАНИКА ЖИДКОСТЕЙ

1. Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к из фрактальному представлению. Что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков.

2. При помощи фракталов также можно смоделировать языки пламени.

3. Пористые материалы хорошо представляются во фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.

ТЕЛЕКОММУНИКАЦИИ

Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

ФИЗИКА ПОВЕРХНОСТЕЙ

Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

МЕДИЦИНА

1.Биосенсорные взаимодействия.

2.Биение сердца

БИОЛОГИЯ

Моделирование хаотических процессов, в частности при описании моделей популяций.

4. Заключение

4.1 Результаты исследования

В моей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хочу только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков, движение цен на бирже и развитие общества и семьи. Может быть, в первое время данное увлечение фракталами было даже слишком бурным и попытки все объяснять с помощью теории фракталов были неоправданными. Но, без сомнения, данная теория имеет право на существование.

В своей работе я собрала интересную информацию о фракталах, их видах, размерности и свойствах, об их применении, а также о треугольнике Паскаля, фигурных числах, золотом сечении, о фрактальных литературных произведениях и многом другом.

В процессе исследования была проделана следующая работа:

Проанализирована и проработана литература по теме исследования.

    Рассмотрены и изучены различные виды фракталов.

    Собрана коллекция фрактальных образов для первичного ознакомления с миром фракталов.

    Установлены взаимосвязи между фракталами и треугольником Паскаля, литературными произведениями, фигурными числами и золотым сечением.

Я убедилась, что тем, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство. Я думаю, что после знакомства с моей работой, вы, как и я, убедитесь в том, что математика прекрасна и удивительна.

5.Библиография:

1. Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. – 128с.

2. Волошинов А. В. Математика и искусство: Кн. для тех, кто не только любит математику и искусство, но и желает задуматься о природе прекрасного и красоте науки. 2-е изд., дораб. и доп. – М.: Просвещение, 2000. - 399с.

3. Гарднер М. А. Нескучная математика. Калейдоскоп головоломок. М.: АСТ: Астрель, 2008. – 288с.: ил.

4. Гринченко В. Т., Мацыпура В.Т., Снарский А.А. Введение в нелинейную динамику. Хаос и фрактал
. Издательство: ЛКИ, 2007 г. 264 стр.

5. Литинский Г.И. Функции и графики. 2-ое издание. – М.: Аслан, 1996. – 208с.: ил.

6. Морозов А. Д. Введение в теорию фракталов. Издательство: Издательство Нижегородского университета, 2004 г.

7. Ричард М. Кроновер Фракталы и хаос в динамических системах Introduction to Fractals and Chaos.
Издательство: Техносфера, 2006 г. 488 стр.

8. окружающего нас мира как сплошные тела с четко обозначенными... Найти программу формирования и просмотра фракталов , исследовать и построить несколько фракталов . Литература 1.А.И.Азевич «Двадцать...

Как был открыт фрактал

Математические формы, известные как фракталы, принадлежат гению выдающегося ученого Бенуа Мандельброта. Большую часть жизни он преподавал математику в Йельском университете США. В 1977 - 1982 годах Мандельброт опубликовал научные труды, посвященные изучению «фрактальной геометрии» или «геометрии природы», в которых разбивал на первый взгляд случайные математические формы на составные элементы, оказавшиеся при ближайшем рассмотрении повторяющимися, - что и доказывало наличие некого образца для копирования. Открытие Мандельброта возымело весомые последствия в развитии физики, астрономии и биологии.



Фракталы в природе

В природе фрактальными свойствами обладают многие объекты, например: кроны деревьев, цветная капуста, облака, кровеносная и альвеолярная системы человека и животных, кристаллы, снежинки, элементы которых выстраиваются в одну сложную структуру, побережья (фрактальная концепция позволила ученым измерить береговую линию Британских островов и другие, ранее неизмеримые, объекты).


Рассмотрим строение цветной капусты. Если разрезать один из цветков, очевидно, что в руках остаётся всё та же цветная капуста, только меньшего размера. Можно продолжать резать снова и снова, даже под микроскопом - однако все, что мы получим - это крошечные копии цветной капусты. В этом простейшем случае даже небольшая часть фрактала содержит информацию обо всей конечной структуре.

Фракталы в цифровой технике

Фрактальная геометрия внесла неоценимый вклад в разработку новых технологий в области цифровой музыки, а так же сделала возможной сжатие цифровых изображений. Существующие фрактальные алгоритмы сжатия изображения основаны на принципе хранения сжимающего изображения вместо самой цифровой картинки. Для сжимающего изображения основная картинка остаётся неподвижной точкой. Фирма «Microsoft» использовала один из вариантов данного алгоритма при издании своей энциклопедии, но по тем или иным причинам широкого распространения эта идея не получила.


В математической основе фрактальной графики лежит фрактальная геометрия, где в основу методов построения «изображений-наследников» помещён принцип наследования от исходных «объектов-родителей». Сами понятия фрактальной геометрии и фрактальной графики появилось всего около 30 лет назад, но уже прочно вошли в обиход компьютерных дизайнеров и математиков.

Базовыми понятиями фрактальной компьютерной графики являются:

  • Фрактальный треугольник - фрактальная фигура - фрактальный объект (иерархия в порядке убывания)
  • Фрактальная прямая
  • Фрактальная композиция
  • «Объект-родитель» и «Объект наследник»

Также как в векторной и трёхмерной графике, создание фрактальных изображений математически вычисляемо. Главное отличие от первых двух видов графики в том, что фрактальное изображение строится по уравнению или системе уравнений, - ничего кроме формулы в памяти компьютера для выполнения всех вычислений хранить не нужно, - и такая компактность математического аппарата позволила использование этой идеи в компьютерной графике. Просто изменяя коэффициенты уравнения, можно с лёгкостью получить совершенно иное фрактальное изображение - при помощи нескольких математических коэффициентов задаются поверхности и линии очень сложной формы, что позволяет реализовать такие приёмы композиции, как горизонтали и вертикали, симметрию и асимметрию, диагональные направления и многое другое.

Как построить фрактал?

Создатель фракталов выполняет роль художника, фотографа, скульптора, и ученого-изобретателя одновременно. Какие предстоят этапы работы сотворения рисунка «с нуля»?

  • задать форму рисунка математической формулой
  • исследовать сходимость процесса и варьировать его параметры
  • выбрать вид изображения
  • выбрать палитру цветов

Среди фрактальных графических редакторов и прочих графических программ можно выделить:

  • «Art Dabbler»
  • «Painter» (без компьютера ни один художник никогда не достигнет заложенных программистами возможностей лишь посредством с помощью карандаша и пера кисти)
  • «Adobe Photoshop» (но здесь изображение «с нуля» не создается, а, как правило, только обрабатывается)

Рассмотрим устройство произвольной фрактальной геометрической фигуры. В её центре находится простейший элемент - равносторонний треугольник, получивший одноимённое название: «фрактальный». На среднем отрезке сторон построим равносторонние треугольники со стороной, равной одной трети от стороны исходного фрактального треугольника. По тому же принципу строятся ещё более мелкие треугольники-наследники второго поколения - и так до бесконечности. Объект, который в результате получился, называется «фрактальной фигурой», из последовательностей которой получаем «фрактальную композицию».

Источник: http://www.iknowit.ru/

Фракталы и древние мандалы

Это мандала для привлечения денег. Утверджают, что красный цвет работает как денежный магнит. А витиеватые узоры вам ничего не напоминают? Мне они показались очень знакомыми и я занялась исследованием мандал в качестве фрактала.

В принципе, мандала — это геометрический символ сложной структуры, который интерпретируется как модель Вселенной, «карта космоса». Вот и первый признак фрактальности!

Их вышивают на ткани, рисуют на песке, выполняют цветными порошками и делают из металла, камня, дерева. Яркий и завораживающий вид, делает её красивым украшением полов, стен и потолков храмов в Индии. На древнем индийском языке «мандала» обозначает мистический круг взаимосвязи духовных и материальных энергий Вселенной или по-другому цветок жизни.

Мне хотелось написать обзор о фрактальных мандалах совсем небольшим, с минимумом абзацев, показав, что взаимосвязь явно существует. Однако, пытаясь найти осознать и связать информацию о фракталах и мандалах в единое целое, у меня было ощущение квантового скачка в неизвестное мне пространство.

Демонстрирую необъятность этой темы цитатой: ”Такие фрактальные композиции или мандалы могут использоваться как в виде картин, элементов дизайна жилого и рабочего помещения, носимых амулетов, в форме видеокассет, компьютерных программ…” В общем, тема для исследования фракталов просто огромнейшая.

Одно я могу сказать точно, мир гораздо разнообразнее и богаче, чем убогие представления нашего ума о нем.

Фрактальные морские животные


Мои догадки о фрактальных морских животных были не беспочвенны. Вот и первые представители. Осьминог - морское придонное животное из отряда головоногих.

Взглянув на эту фотографию, мне стало очевидно фрактальное строение его тела и присосок на всех восьми щупальцах этого животного. Присосок на щупальцах взрослого осьминога достигает до 2000.

Интересен то факт, что у осьминога три сердца: одно (главное) гонит голубую кровь по всему телу, а два других — жаберных — проталкивают кровь через жабры. Некоторые виды этих глубоководных фракталов ядовиты.

Приспосабливаясь и маскируясь под окружающую среду, осьминог обладает весьма полезной способностью изменять окраску.

Осьминогов считают самыми «умными» среди всех беспозвоночных. Узнают людей, привыкают к тем, кто их кормит. Интересно было бы посмотреть на осьминогов, которые легко поддаются дрессировке, имеют хорошую память и даже различают геометрические фигуры. Но век этих фрактальных животных недолог - максимум 4 года.

Человек использует чернила этого живого фрактала и других головоногих. Они пользуются спросом у художников за их стойкость и красивый коричневый тон. В средиземноморской кухне осьминог является источником витаминов B3, B12, калия, фосфора и селена. Но я думаю, что этих морских фракталов нужно уметь готовить, чтобы получать удовольствие от их употребления в виде пищи.

Кстати, нужно заметить, что осьминоги - хищники. Своими фрактальными щупальцами они удерживают жертву в виде моллюсков, ракообразных и рыбы. Жаль, если пищей этих морских фракталов становится вот такой красивый моллюск. По-моему, тоже типичный представитель фракталов морского царства.


Это родственник улиток, брюхоногий голожаберный моллюск Главк, он же Глаукус, он же Glaucus atlanticus, он же Glaucilla marginata. Это фрактал еще и необычен тем, что живет и передвигается под поверхностью воды, удерживаясь за счет поверхностного натяжения. Т.к. моллюск является гермафродитом, то после спаривания оба "партнера" откладывают яйца. Этот фрактал встречается во всех океанах тропического пояса.

Фракталы морского царства



Каждый из нас хотя бы раз в жизни держал в руках и с неподдельным детским интересом рассматривал морскую раковину.

Обычно раковины являются красивым сувениром, напоминающим о поездке на море. Когда смотришь на это спиралевидное образование беспозвоночных моллюсков, нет никаких сомнений в его фрактальной природе.

Мы, люди, чем-то напоминаем этих мягкотелых моллюсков, обитая в благоустроенных бетонных домах-фракталах, помещая и перемещая свое тело в быстрых автомобилях.


Еще одни типичнейшим представителем фрактального подводного мира является коралл.
В природе известно свыше 3500 разновидностей кораллов, в палитре которых различают до 350 цветовых оттенков.

Коралл - это материал скелета колонии коралловых полипов, тоже из семейства беспозвоночных. Их огромные скопления образуют целые коралловые рифы, фрактальный способ образования которых очевиден.

Коралл с полной уверенностью можно назвать фракталом из морского царства.

Он также используется человеком в виде сувенира или сырья для ювелирных изделий и украшений. Но повторить красоту и совершенство фрактальной природы очень сложно.

Почему-то не сомневаюсь, что в подводном мире также отыщется и множество фрактальных животных .

В очередной раз, исполняя ритуал на кухне с ножом и разделочной доской, а потом, опустив нож в холодную воду, я вся в слезах в очередной раз придумывала, как бороться со слезоточивым фракталом, который практически ежедневно появляется на моих глазах.

Принцип фрактальности тот же, что и у знаменитой матрешки - вложенность. Именно поэтому фрактальность замечается не сразу. К тому же, светлый однородный окрас и его природная способность вызывать неприятные ощущения не способствуют пристальному наблюдению за мирозданием и выявлению фрактальных математических закономерностей.

А вот салатный лук сиреневого цвета в силу своего окраса и отсутствия слезоточивых фитонцидов навел на размышления о природной фрактальности этого овоща. Конечно, фрактал он незамысловатый, обычные окружности разного диаметра, можно даже сказать примитивнейший фрактал. Но не мешало бы вспомнить, что шар считается идеальной геометрической фигурой в пределах нашей Вселенной.

О полезных свойствах лука в Интернете опубликовано немало статей, но как-то никто не пытался изучать этот природный экземпляр с точки зрения фрактальности. Я могу только констатировать факт полезности применения фрактала в виде лука на своей кухне.

P.S. А овощерезку для измельчения фрактала я уже приобрела. Теперь придется поразмышлять, насколько фрактален такой полезный овощ, как обычная белокачанная капуста. Тот же принцип вложенности.

Фракталы в народном творчестве


Мое внимание привлекла история всемирно известной игрушки «Матрешка». Присмотревшись внимательней, с уверенностью можно сказать, что эта игрушка-сувенир - типичный фрактал.

Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.

Мои небольшие исследования истории появления этого игрушечного фрактала на мировом рынке показали, что корни у этой красавицы - японские. Матрешка всегда считалась исконно русским сувениром. Но оказалось, что она прототип японской фигурки старика-мудреца Фукурума, привезенного когда-то в Москву из Японии.

Но именно российский игрушечный промысел принес этой японской фигурке мировую славу. Откуда возникла идея фрактальной вложенности игрушки, лично для меня, так и осталось загадкой. Скорей всего автор этой игрушки использовал принцип вложенности фигурок друг в друга. А самый простой способ вложения - это подобные фигурки разных размеров, а это уже - фрактал.


Не менее интересный объект исследования представляет собой роспись игрушки-фрактала. Это декоративная роспись - хохлома. Традиционные элементы хохломы - это травяные узоры из цветов, ягод и веток.

Снова все признаки фрактальности. Ведь один и тот же элемент можно повторять несколько раз в разных вариантах и пропорциях. В итоге получается народная фрактальная роспись.

И если новомодной росписью компьютерных мышек, крышек ноутбуков и телефонов никого уже не удивишь, то фрактальный тюнинг автомобиля в народном стиле - это что-то новое в автодизайне. Остается только удивляться проявлению мира фракталов в нашей жизни таким необычным образом в таких обычных для нас вещах.

Фракталы на кухне

Каждый раз, разбирая цветную капусту на небольшие соцветия для бланширования в кипящей воде, я ни разу не обращала внимания на явные признаки фрактальности, пока у меня в руках не оказался этот экземпляр.

Типичный представитель фрактала из растительного мира красовался на моем кухонном столе.

При всей моей любви к цветной капусте мне все время попадались экземпляры с однородной поверхностью без видимых признаков фрактальности, и даже большое число соцветий, вложенных друг в друга, не давали мне повода увидеть в этом полезном овоще фрактал.

Но поверхность именно этого экземпляра с явно выраженной фрактальной геометрией не оставляла ни малейшего сомнения во фрактальном происхождении этого вида капусты.

Очередной поход в гипермаркет только подтвердил фрактальный статус капусты. Среди огромного числа экзотических овощей красовался целый ящик с фракталами. Это была Романеску, или романская брокколи, цветная коралловая капуста.



Оказывается, дизайнеры и 3D-художники восторгаются ее экзотическими формами, похожими на фракталы.

Капустные почки нарастают по логарифмической спирали. Первые упоминания о капусте романеску пришли из Италии 16-го века.

А капуста броколли совсем не частая гостья в моем рационе, хотя по содержанию полезных веществ и микроэлементов она превосходит цветную капусту в разы. Но ее поверхность и форма настолько однородны, что мне никогда не приходило в голову увидеть в ней овощной фрактал.

Фракталы в квиллинге

Увидев ажурные поделки в технике квиллинг, меня никогда не покидало ощущение, что что-то они мне напоминают. Повторение одних и тех же элементов в разных размерах - конечно же, это принцип фрактальности.


Посмотрев очередной мастер-класс по квилингу, не осталось даже сомнений в фрактальности квиллинга. Ведь для изготовления различных элементов для поделок из квиллинга используется специальная линейка с окружностями разного диаметра. При всей красоте и неповторимости изделий, это - невероятно простая техника.

Почти все основные элементы для поделок в квиллинге делаются из бумаги. Чтобы запастись бумагой для квиллинга бесплатно, проведите дома ревизию своих книжных полок. Наверняка, там вы обнаружите пару-тройку ярких глянцевых журналов.

Инструменты для квиллинга просты и недороги. Все что вам необходимо для выполнения любительских работ в стиле квиллинг, вы можете найти среди своих домашних канцелярских принадлежностей.

А история квиллинга начинается в 18 веке в Европе. В эпоху Ренессанса монахи из французских и итальянских монастырей с помощью квиллинга украшали книжные обложки и даже не подозревали о фрактальности изобретенной ими техники бумагокручения. Девушки из высшего общества даже проходили курс по квиллингу в специальных школах. Вот так эта техника начала распространяться по странам и континентам.

Этот мастер-класс видео квиллинг по изготовлению роскошного оперения можно даже назвать "фракталы своими руками". С помощью фракталов из бумаги получаются чудесный эксклюзивные открытки-валентики и много разных других интересных вещей. Ведь фантазия, как и природа неисчерпаема.


Ни для кого не секрет, что японцы по жизни сильно ограничены в пространстве, в связи с чем, им приходится всячески изощряться в эффективном его использовании. Такеши Миякава показывает, как это можно делать одновременно эффективно и эстетично. Его фрактальный шкаф подтверждение тому, что использование фракталов в дизайне - это не только дань моде, но и гармоничное конструкторское решение в условиях ограниченного пространства.

Этот пример использования фракталов в реальной жизни, применительно к дизайну мебели показал мне, что фракталы реальны не только на бумаге в математических формулах и компьютерных программах.

И, похоже, что принцип фрактальности природа использует повсеместно. Только нужно присмотреться к ней внимательней, и она проявит себя во всем своем великолепном изобилии и бесконечности бытия.

Читайте также: