Хаотическая динамика. Аттрактор лоренца История теории хаоса

В 1961 году метеоролог и математик Эдвард Лоренц, скончавшийся 16 апреля 2008 года, ввел в созданную им компьютерную модель погоды данные, округлив их не до шестого, а до третьего знака после запятой. В результате был сформулирован эффект бабочки, открыт один из странных аттракторов, обнаружена непредсказуемость поведения многих детерминированных систем и, в конечном итоге, создана теория хаоса.

Предыстория: демон Лапласа

В 1814 великий французский ученый Пьер-Симон Лаплас создал демона, которому суждено было на много лет стать предметом научных дискуссий. Вымышленный демон знал положение и скорость каждой частицы во Вселенной в каждый момент времени и, владея всеми физическими законами, мог предсказать будущее каждой частицы и описать ее прошлое.

Вопрос: мыслим ли такой демон хотя бы теоретически? Успехи науки Нового времени наводили на мысль, что да: орбиты планет были рассчитаны, появления комет – предсказаны, случайные события – описаны теорией вероятности.

В дальнейшем, однако, демон Лапласа подвергся жесткой критике. После развития квантовой механики и открытия принципа неопределенности Гейзенберга (нельзя точно измерить одновременно скорость и координаты частицы) стало понятно, что квантовые системы демону неподвластны: в них есть принципиальная непредсказуемость.

Впоследствии также отмечалось, что существование демона противоречило бы законам термодинамики, что ему в принципе не хватило бы для знаний и вычислений информационных мощностей, даже используй он все ресурсы Вселенной.

Однако демон не сдал позиции полностью. В самом деле, представим себе полностью детерминированную (предопределенную, лишенную случайности) систему (классическую, без квантовых эффектов). Если мы знаем все законы, управляющие ее поведением (будь они сколь угодно сложны), знаем все необходимые параметры и обладаем необходимыми вычислительными мощностями (то есть под рукой есть демон Лапласа – читай: суперкомпьютер), то уж для такой-то системы мы сможем полностью предсказать поведение?

Есть одна оговорка. Все наши измерения будут содержать какую-нибудь ошибку. Переменные, хранящиеся в памяти компьютера, будут иметь ограниченную точность. То есть придется пользоваться приблизительными данными. Ну и ладно: нам не нужна бесконечная точность, вполне достаточно приблизительных предсказаний. Исходные данные содержат ошибку в пятом знаке? Ошибка предсказания в пятом знаке нас вполне устроит.

Итак, можно ли, например, предсказывать погоду? Хотя бы примерно? Хотя бы на каком-то ограниченном участке, но на более-менее приличный срок?

Три знака после запятой

Эдвард Лоренц с детства увлекался погодой и математикой. Во время Второй мировой войны стал метеорологом ВВС США, после продолжил изучать теоретические основы метеорологии в Массачусетском технологическом институте, а также стал заниматься довольно экзотическим по тем временам делом – пытаться научиться прогнозировать погоду с помощью компьютерных моделей.

В его распоряжении находилась вычислительная машина Royal McBee. В 1960 году Лоренц создал упрощенную модель погоды. Модель представляла собой набор чисел, описывавший значение нескольких переменных (температуры, атмосферного давления, скорости ветра) в данный момент времени. Лоренц выбрал двенадцать уравнений, описывавших связь между этими переменными. Значение переменных в следующий момент времени зависело от их значения в предыдущий момент и рассчитывалось по этим уравнениям. Таким образом, модель была полностью детерминирована.

Коллеги Лоренца от модели пришли в восторг. Машине скармливались несколько чисел, она начинала выдавать ряды чисел (впоследствии Лоренц научил ее рисовать несложные графики), описывающие погоду в некотором воображаемом мире. Числа не повторялись – они порой почти повторялись, система как будто воспроизводила старое свое состояние, но не полностью, циклов не возникало. Словом, искусственная погода была плохо предсказуема, причем характер этой непредсказуемости (апериодичность) был примерно такой же, какой и у погоды за окном. Студенты и преподаватели заключали пари, пытаясь угадать, каким будет состояние модели в следующий момент.

Зимой 1961 года Лоренц решил подробнее изучить уже построенный машиной график изменения одной из переменных. В качестве начальных данных он ввел значения переменных из середины графика и вышел отдохнуть. Машина должна была бы точно воспроизвести вторую половину графика и продолжить строить его дальше. Однако вернувшись, Лоренц обнаружил совершенно другой график. Если в начале он еще более-менее повторял первый, то к концу не имел с ним ничего общего.

Расхождение двух графиков погоды, берущих начало из одной точки. Распечатка Лоренца 1961 года, воспроизведенная в книге Джеймса Глейка "Хаос: Создание новой науки" (СПб., "Амфора", 2001).

Получалось, что модель, из которой полностью устранена случайность, при одних и тех же начальных значениях выдает совершенно разные результаты. Машина не сломалась и считала все правильно, Лоренц не опечатался при вводе данных.

Разгадка нашлась довольно быстро: в памяти машины значения переменных хранились с точностью до шести знаков после запятой (...,506217), а на распечатку выдавалось только три (...,506). Лоренц, разумеется, ввел округленные значения, резонно предположив, что такой точности вполне достаточно.

Оказалось, что нет. "...овалились маленькие костяшки домино... большие костяшки... огромные костяшки, соединенные цепью неисчислимых лет, составляющих Время", – написал в 1952 году в знаменитом рассказе "И грянул гром" Рэй Брэдбери. Примерно это же произошло в модели Лоренца. Система оказалась исключительно чувствительной к малейшим воздействиям на нее.

Эффект бабочки

Это наблюдение, вкупе со многими другими открытиями, привело к подробному изучению детерминированного хаоса – иррегулярного и непредсказуемого поведения детерминистских нелинейных динамических систем (определение Родерика Дженсена из Йельского университета), явно беспорядочного, повторяющегося поведения в простой детерминистской системе, похожей на работающие часы (определение Брюса Стюарта из Брукхевенской национальной лаборатории США).

Откуда в детерминированной системе хаос и непредсказуемость? От сильной чувствительности к начальным условиям. Малейшее воздействие, от которого невозможно избавиться – округление переменной (если это теоретическая модель), ошибка измерения (если это исследование реальной системы) – и система ведет себя совершенно по-другому.

Лоренц приводил наглядный пример: если погода действительно относится к классу настолько чувствительных систем (разумеется, не все системы такие), то взмах крыльев чайки может вызвать заметные изменения погоды. Впоследствии чайка была заменена бабочкой, а в 1972 году появилась работа "Предсказуемость: может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?".

Так родился знаменитый термин "эффект бабочки", отсылавший и к рассказу Брэдбери и, удивительным образом, к следующему открытию Лоренца – странному аттрактору, названному в его честь.

Неожиданная структура

На первый взгляд, открытие относилось скорее к разряду плохих новостей: многие системы, несмотря на кажущуюся детерминированность, ведут себя совершенно непредсказуемо. Однако Лоренц не остановился на достигнутом и стал искать порядок в случайности. Казалось, где-то он должен быть: ведь неслучайно система демонстрировала апериодическое поведение, почти повторяя время от времени уже возникавшее ранее состояние.

Лоренц построил похожую, но более простую модель из трех уравнений с тремя переменными. Модель описывала конвекцию в газе и жидкости, а также поведение несложного механического устройства – водяного колеса Лоренца (см. иллюстрацию). Под напором воды, наполняющей емкости (и вытекающей из них сквозь небольшие отверстия), колесо ведет себя удивительно сложным образом: замедляет вращение, ускоряет его, начинает вращаться в другую сторону, останавливается – в общем, как и положено уважающей себя хаотической системе.

Уравнения выглядели следующим образом
dx/dt = s(y - x)
dy/dt = x(r - z) - y
dz/dt = xy - bz
s=10, r=28, b=8/3. Можно брать и другие значения параметров, однако не при всех система будет демонстрировать хаотическое поведение.

Для наглядного отображения поведения системы Лоренц использовал не обычный временной график, а фазовый портрет. Три числа, описывающие состояние системы, обозначали координаты точки в трехмерном пространстве. С каждым шагом на фазовом портрете появлялась новая точка.

Если бы система рано или поздно приходила к полной устойчивости, добавление точек рано или поздно должно было полностью остановиться. Если бы она приходила к периодическим колебаниям, линия из точек образовала бы кольцо. Наконец, если в поведении системы не было бы вообще никаких закономерностей, на фазовом портрете могло бы появиться что угодно.

Результат оказался совершенно неожиданным. Объект, который появился на портрете (см. главную иллюстрацию), располагался в определенных границах, не пересекая их. Он обладал определенной структурой – напоминал два крыла бабочки – но в ее пределах был совершенно неупорядочен. Он не прекращал "развиваться": ни одна новая точка не совпадала с предыдущей, фазовый портрет можно было строить бесконечно. Переход от одного из крыльев к другому соответствовал началу вращения колеса в другую сторону.

Такие объекты – странные аттракторы – сыграли большую роль во фрактальной геометрии и теории хаоса. "Крылья бабочки" получили название "аттрактор Лоренца".

Эффект бабочки: фазовые портреты для трех моментов времени. Желтая и синяя линия представляют собой траектории, соответствующие начальным наборам данных, в которых значения x отличались на 10 -5 . Сначала линии почти совпадают (желтая закрывает с

Теория хаоса

Наблюдения Лоренца заставляют пережить два шока. Первый – оказывается, демон Лапласа может быть бессильным даже перед не очень сложной детерминированной системой. Там, где все, казалось бы, предопределено, неожиданно возникает хаос.

Второй шок – в этом хаосе, оказывается, спрятан порядок. Неожиданный, странный, плохо понятный, представляющий собой "тонкую структуру, таящуюся в беспорядочном потоке информации" (Дж. Глейк), но тем более интересный. Аттрактор Лоренца не решает проблемы предсказания, но уже само его существование достойно изучения.

Поисками подобных проявлений порядка в хаосе и занимается сравнительно молодая наука – теория хаоса. Она возникла не мгновенно и не имеет одного создателя. Ее основы были заложены в работах Пуанкаре, Колмогорова, Арнольда, Ляпунова, Ландау, Смэйла, Мандельброта, Фейгенбаума и десятков других талантливых ученых, либо увидевших то, что до них никто не видел, либо сумевших описать то, что увидели другие.

Одним же из ключевых моментов (далеко не сразу, кстати, оцененным по достоинству) в ее возникновении считается день, когда Эдвард Нортон Лоренц, любитель погоды и упорный искатель странного, ввел в свою модель значения переменных, округленные до трех знаков после запятой.

Реферат

По дисциплине: Математика

Аттрактор Лоренца

Аттрактор Лоренца

решение системы при r =0,3

решение системы при r =1,8

решение системы при r =3,7

решение системы при r =10

решение системы при r =16

решение системы при r =24,06

решение системы при r =28 ― собственно, это и есть аттрактор Лоренца

решение системы при r =100 ― виден режим автоколебаний в системе

Аттрактор Лоренца (от англ. to attract - притягивать) ― инвариантное множество в трехмерном гладкого , которое имеет определённую сложную топологическую структуру и является асимптотически устойчивым, оно и все траектории из некоторой окрестности стремятся к при (отсюда название).

Аттрактор Лоренца был найден в численных экспериментах , исследовавшего поведение траекторий нелинейной системы:

при следующих значениях параметров: σ=10, r =28, b =8/3. Эта система вначале была введена как первое нетривиальное для задачи о морской воды в плоском слое, чем и мотивировался выбор значений σ, r и b , но она возникает также и в других физических вопросах и моделях:

    конвекция в замкнутой петле;

    вращение водяного колеса;

    модель одномодового ;

    диссипативный с инерционной нелинейностью.

Исходная гидродинамическая система уравнений:

где - скорость течения, - температура жидкости, - температура верхней границы (на нижней поддерживается ), - плотность, - давление, - сила тяжести, - соответственно , и кинематической .

В задаче о конвекции модель возникает при разложении скорости течения и температуры в двумерные и последующей их «обрезки» с точностью до первых-вторых гармоник. Кроме того, приведённая полная система уравнений записывается в . Обрезка рядов в определённой мере оправдана, так как Сольцмен в своих работах продемонстрировал отсутствие каких-либо интересных особенностей в поведении большинства гармоник.

Применимость и соответствие реальности

Обозначим физический смысл переменных и параметров в системе уравнений применительно к упомянутым задачам.

    Конвекция в плоском слое. Здесь x отвечает за скорость вращения водяных валов, y и z - за распределение температуры по горизонтали и вертикали, r - нормированное , σ - (отношение коэффициента кинематической к коэффициенту ), b содержит информацию о геометрии конвективной ячейки.

    Конвекция в замкнутой петле. Здесь x - скорость течения, y - отклонение температуры от средней в точке, отстоящей от нижней точки петли на 90°, z - то же, но в нижней точке. Подведение тепла производится в нижней точке.

    Вращение водяного колеса. Рассматривается задача о колесе, на ободе которого укреплены корзины с отверстиями в дне. Сверху на колесо симметрично относительно оси вращения льётся сплошной поток воды. Задача равнозначна предыдущей, перевернутой «вверх ногами», с заменой температуры на плотность распределения массы воды в корзинах по ободу.

    Одномодовый лазер. Здесь x - амплитуда волн в лазера, y - , z - инверсия населённостей , b и σ - отношения коэффициентов инверсии и поля к коэффициенту релаксации поляризации, r - интенсивность .

Стоит указать, что применительно к задаче о конвекции модель Лоренца является очень грубым приближением, весьма далёким от реальности. Более-менее адекватное соответствие существует в области регулярных режимов, где устойчивые решения качественно отображают экспериментально наблюдаемую картину равномерно вращающихся конвективных валов (). Хаотический режим, присущий модели, не описывает турбулентной конвекции в силу существенной обрезки исходных тригонометрических рядов.

Интересным является существенно большая точность модели при некоторой её модификации, применяемая в частности для описания конвекции в слое, подвергаемом вибрации в вертикальном направлении либо переменному тепловому воздействию. Такие изменения внешних условий приводят к модулированию коэффициентов в уравнениях. При этом высокочастотные Фурье-компоненты температуры и скорости существенно подавляются, улучшая соответствие модели Лоренца и реальной системы.

Примечательно везение Лоренца при выборе значения параметра , так как система приходит к только при значениях, больших 24,74, при меньших поведение оказывается совершенно иным.

Поведение решения системы

Рассмотрим изменения в поведении решения системы Лоренца при различных значениях параметра r. На иллюстрациях к статье приведены результаты численного моделирования для точек с начальными координатами (10,10,10) и (-10,-10,10). Моделирование производилось с помощью приведённой ниже программы, написанной на языке , построение графиков по полученным таблицам - из-за слабых графических возможностей Фортрана с помощью Compaq Array Viewer.

    r <1 - аттрактором является начало координат, других устойчивых точек нет.

    1< r <13,927 - траектории спирально приближаются (это соответствует наличию затухающих колебаний) к двум точкам, положение которых определяется формулами:

Эти точки определяют состояния стационарного режима конвекции, когда в слое формируется структура из вращающихся валов жидкости.

    r ≈13,927 - если траектория выходит из начала координат, то, совершив полный оборот вокруг одной из устойчивых точек, она вернется обратно в начальную точку - возникают две гомоклинические петли. Понятие гомоклинической траектории означает, что она выходит и приходит в одно и то же положение равновесия.

    r >13,927 - в зависимости от направления траектория приходит в одну из двух устойчивых точек. Гомоклинические петли перерождаются в неустойчивые предельные циклы, также возникает семейство сложно устроенных траекторий, не являющееся аттрактором, а скорее наоборот, отталкивающее от себя траектории. Иногда по аналогии эта структура называется «странным репеллером» (англ. to repel - отталкивать).

    r ≈24,06 - траектории теперь ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам - возникает собственно аттрактор Лоренца. Однако обе устойчивые точки сохраняются вплоть до значений r ≈24,74.

При больших значениях параметра траектория претерпевает серьезные изменения. Шильников и Каплан показали, что при очень больших r система переходит в режим автоколебаний, при этом, если уменьшать параметр, будет наблюдаться переход к хаосу через последовательность удвоений периода колебаний.

Значимость модели

Модель Лоренца является реальным физическим примером с хаотическим поведением, в отличие от различных искусственно сконструированных отображений ( , и др.).

Программы, моделирующие поведение системы Лоренца

Borland C

#include

#include

void main()

double x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

double dt = 0.0001;

int a = 5, b = 15, c = 1;

int gd=DETECT, gm;

initgraph(&gd, &gm, "C:\\BORLANDC\\BGI");

do {

X1 = x + a*(-x+y)*dt;

Y1 = y + (b*x-y-z*x)*dt;

Z1 = z + (-c*z+x*y)*dt;

X = x1; y = y1; z = z1;

Putpixel((int)(19.3*(y - x*0.292893) + 320),

(int)(-11*(z + x*0.292893) + 392), 9);

} while (!kbhit());

closegraph();

Mathematica

data = Table[

With[{N = 1000, dt = 0.01, a = 5, b = 1 + j, c = 1},

NestList &,

{3.051522, 1.582542, 15.62388}, N

{j, 0, 5}];

Graphics3D@MapIndexed[{Hue], Point[#1]} &, data]

Borland Pascal

Program Lorenz;

Uses CRT, Graph;

Const

dt = 0.0001;

a = 5;

b = 15;

c = 1;

Var

gd, gm: Integer;

x1, y1, z1, x, y, z: Real;

Begin

gd:=Detect;

InitGraph(gd, gm, "c:\bp\bgi");

x:= 3.051522;

y:= 1.582542;

z:= 15.62388;

While not KeyPressed Do Begin

x1:= x + a*(-x+y)*dt;

y1:= y + (b*x-y-z*x)*dt;

z1:= z + (-c*z+x*y)*dt;

x:= x1;

y:= y1;

z:= z1;

PutPixel(Round(19.3*(y - x*0.292893) + 320),

Round(-11*(z + x*0.292893) + 392), 9);

End;

CloseGraph;

ReadKey;

End.

FORTRAN

program LorenzSystem

real,parameter::sigma=10

real,parameter::r=28

real,parameter::b=2.666666

real,parameter::dt=.01

integer,parameter::n=1000

real x,y,z

open(1,file="result.txt",form="formatted",status="replace",action="write")

x=10.;y=10.;z=10.

do i=1,n,1

x1=x+sigma*(y-x)*dt

y1=y+(r*x-x*z-y)*dt

z1=z+(x*y-b*z)*dt

x=x1

y=y1

z=z1

write(1,*)x,y,z

enddo

print *,"Done"

close(1)

end program LorenzSystem

QBASIC/FreeBASIC(«fbc -lang qb»)

DIM x, y, z, dt, x1, y1, z1 AS SINGLE

DIM a, b, c AS INTEGER

x = 3.051522: y = 1.582542: z = 15.62388: dt = 0.0001

a = 5: b = 15: c = 1

SCREEN 12

PRINT "Press Esc to quit"

WHILE INKEY$ <> CHR$(27)

x1 = x + a * (-x + y) * dt

y1 = y + (b * x - y - z * x) * dt

z1 = z + (-c * z + x * y) * dt

x = x1

y = y1

z = z1

PSET ((19.3 * (y - x * .292893) + 300), (-11 * (z + x * .292893) + 360)), 9

WEND

END

JavaScript и HTML5

var cnv = document.getElementById("cnv");

var cx = cnv.getContext("2d");

var x = 3.051522, y = 1.582542, z = 15.62388, x1, y1, z1;

var dt = 0.0001;

var a = 5, b = 15, c = 1;

var h = parseInt(cnv.getAttribute("height"));

var w = parseInt(cnv.getAttribute("width"));

var id = cx.createImageData(w, h);

var rd = Math.round;

var idx = 0;

i=1000000; while (i--) {

x1 = x + a*(-x+y)*dt;

y1 = y + (b*x-y-z*x)*dt;

z1 = z + (-c*z+x*y)*dt;

x = x1; y = y1; z = z1;

idx=4*(rd(19.3*(y - x*0.292893) + 320) + rd(-11*(z + x*0.292893) + 392)*w);

id.data = 255;

cx.putImageData(id, 0, 0);

IDL

PRO Lorenz

n=1000000 & r=dblarr(n,3) & r= & a=5. & b=15. & c=1.

FOR i=0.,n-2. DO r=r + [ a*(r-r), b*r-r-r*r, r*r-c*r ]*0.0001

plot,19.3*(r[*,1]-r[*,0]*0.292893)+320.,-11*(r[*,2]+r[*,0]*0.292893)+392.

END

Литература

    Кузнецов С. П. , Лекция 3. Система Лоренца; Лекция 4. Динамика системы Лоренца. // - М.: Физматлит, 2001.

    Saltzman B . Finite amplitude free convection as an initial value problem. // Journal of the atmospheric science, № 7, 1962 - p. 329-341.

    Лоренц Э . Детерминированное непериодическое движение // Странные аттракторы. - М., 1981. - С. 88-116.

Хаотические, странные аттракторы соответствуют непредсказуемому поведению систем, не имеющих строго периодической динамики, это математический образ детерминированных непериодических процессов. Странные аттракторы структурированы и могут иметь весьма сложные и необычные конфигурации в трехмерном пространстве.

Рис. 1.

и фазовые портреты (нижний ряд) для трех различных систем

(Глейк, 2001)

Хотя в работах некоторых математиков ранее была установлена возможность существования странных аттракторов, впервые построение странного аттрактора (рис. 2) как решение системы дифференциальных уравнений осуществил в работе по компьютерному моделированию термоконвекции и турбулентности в атмосфере американский метеоролог Э. Лоренц (E.Lorentz, 1963). Конечное состояние системы Лоренца чрезвычайно чувствительно к начальному состоянию. Сам же термин «странный аттрактор» появился позже, в работе Д. Рюэлля и Ф. Такенса в (D.Ruelle, F. Takens, 1971: см. Рюэль, 2001) о природе турбуленции в жидкости; авторы отмечали, что размерность странного аттрактора отлична от обычной, или топологической.Позже Б. Мандельброт (B.Mandelbrot) отождествил странные аттракторы, траектории которых при последовательных вычислениях компьютера бесконечно расслаиваются, расщепляются, с фракталами.

Рис. 2. (Хаотические траектории в системе Лоренца). Аттрактор Лоренца (Кроновер, 2000)

Лоренц (Lorenz, 1963) обнаружил, что даже простая система из трех нелинейных дифференциальных уравнений может привести к хаотическим траекториям В свою очередь, движение воздушных потоков в плоском слое жидкости постоянной толщины при разложении скорости течения и температуры в двойные ряды Фурье с последующем усечением до первых-вторых гармоник:

где s, r и b -- некоторые положительные числа, параметры системы. Обычно исследования системы Лоренца проводят при s =10, r =28 и b =8/3 (значения параметров).

Таким образом, системы, поведение которых детерминируется правилами, не включающим случайность, с течением времени проявляют непредсказуемость за счет нарастания, усиления, амплификации малых неопределенностей, флуктуаций. Наглядный образ системы с нарастанием неопределенности - так называемый биллиард Я.Г. Синая: достаточно большая последовательность соударений шаров неизбежно ведет к нарастанию малых отклонений от исчисляемых траекторий (за счет не идеально сферической поверхности реальных шаров, не идеально однородной поверхности сукна) и непредсказуемости поведения системы.

В таких системах «случайность создается подобно тому, как перемешивается тесто или тасуется колода карт» (Кратчфилд и др., 1987). Так называемое «преобразование пекаря» с последовательным растягиванием и складыванием, бесконечным образованием складок - одна из моделей возникновения перехода от порядка к хаосу; при этом число преобразований может служить мерой хаоса. Есть Аттрактор Айдзавы, который является частным случаем аттрактора Лоренца.

где а = 0,95, B = 0,7, с = 0,6, d = 3,5, е = 0,25, F = 0,1. Каждая предыдущая координата вводится в уравнения, полученное в результате значение, умноженное на значения времени.

Примеры других странных аттракторов

Аттрактор ВангСун

Здeсь a, b, d, e?R, c> 0 и f< 0 являются константами, cf ? 0, и x, y, z а это переменные состояния.

Аттрактор Рёсслера

Где a,b,c= положительные постоянные. При значениях параметров a=b=0.2 и

Подробности Опубликовано: 10.07.2018 11:13 : Windows.
Лицензия: бесплатно.
Версия: 1.1.0.0.
Аннотация : демонстрируется программа для анализа системы Лоренца, позволяющая наблюдать такие состояния системы, как устойчивый аттрактор, два неустойчивых аттрактора, фокус, гомоклиническая петля с устойчивым и неустойчивыми фокусами, аттрактор Лоренца, предельный цикл и удвоенный предельный цикл.
Скачать: ZIP (архив программы) .
Ключевые слова: аттрактор Лоренца, система Лоренца, исследование системы дифференциальных уравнений Лоренца, аттрактор Лоренца matlab, исследование системы Лоренца, аттрактор Лоренца c++, эффект бабочки, гомоклиническая петля, фазовый портрет Лоренца, фазовый портрет системы Лоренца, фазовое пространство Лоренца, решение системы лоренца, странный аттрактор Лоренца, бабочка Лоренца, гомоклиническая траектория, гомоклиническая структура, хаотическое решение, Эдвард Лоренц.

Система Лоренца представляет собой трехмерную систему нелинейных автономных дифференциальных уравнений. Динамическая система была исследована Эдвардом Лоренцем в 1963 году. Основной причиной, породившей такой интерес к системе уравнений Лоренца, является ее хаотическое поведение. Система уравнений записывается в виде

где q, r, b > 0. В результате интегрирования системы были выявлены закономерности, приведенные ниже.

При r>0 и r<1 система имеем только одну критическую точку. Она является одновременно локальным и глобальным аттрактором. Любое начальное состояние приближается к началу координат при t стремящемся к бесконечности (рис.1).

Рис. 1. Устойчивый аттрактор, r>0 и r<1

При r близкой к 1 возникает критическое замедление. Когда r превышает значение 1, происходит первая бифуркация. Начало координат теряет устойчивость и от него ответвляются два аттрактора (рис.2), оба глобально и локально устойчивы.

Рис. 2. Два устойчивых аттрактора, r>1

В случае r<1,345 точки равновесия представляются узлами (рис.3), а при r>1,345 – фокусами (рис.4).

Рис. 3. Два узла, r=1,3

Рис. 4. Два фокуса, r=10

При увеличении r до величины 13,926 две неустойчивые траектории, исходящие из начала координат, возвращаются в начало координат при t стремящемся к бесконечности, при этом перестают быть глобальными аттракторами.

В случае r=13,927 точка может совершать колебательные движения из одной окрестности в другую и обратно. Такое поведение называют метастабильным хаосом или гомоклинической петлей (рис.5).

Рис. 5. Гомоклиническая петля, r=13,927

При r>13,927 в зависимости от направления траектория приходит в одну из двух устойчивых точек. Гомоклинические петли перерождаются в неустойчивые предельные циклы, также возникает семейство сложно устроенных траекторий, не являющееся аттрактором. Происходит бифуркация гомоклинических траекторий с образованием двух неустойчивых циклов (рис.6).

Рис. 6. Два неустойчивых цикла, r>13,927

При значении r=24,06 траектории ведут не к устойчивым точкам, а асимптотически приближаются к неустойчивым предельным циклам - возникает собственно аттрактор Лоренца (рис.7).

Рис. 7. Аттрактор Лоренца, r=24,06

В случае r>24,06 происходит очередная бифуркация. Однако обе устойчивые точки сохраняются вплоть до значений r=24,74.

При r=24,74 возникает инверсия бифуркации Хопфа, когда r>24,74 остается «странный аттрактор» (рис.8).

Рис. 8. Странный аттрактор Лоренца, r>24,74

В случае увеличения r до 100 наблюдается автоколебательный режим (рис.9).

Рис. 9. Автоколебательный режим, r=100

При увеличении r до значения 225 происходит каскад бифуркаций удвоения цикла (рис.10).

Рис. 10. Удвоение цикла, r=225

Рис. 11. Два несимметричных периодических решения, r=300

При больших значениях r в системе существует симметричный цикл (рис.12).


Рис. 12. Симметричный цикл, r=400

Программа «Lorenz - программа для изучения системы Лоренца», реализованная в среде разработки Turbo C++, позволяет смоделировать систему Лоренца. Построение фазовых портретов и графика зависимости решений от времени t ведется на основе метода Рунге-Кутта третьего порядка. Интерфейс программы приведен на рис.13.


Рис. 13.

Моделирование поведения системы Лоренца с использованием программы Lorenz предполагает выполнение следующих шагов (рис.14):

  • определить начальные координаты (x0,y0,z0);
  • задать шаг интегрирования h и число итераций i;
  • установить значение коэффициентов q, r, b;
  • (опционально) установить индикатор «Подробно» для получения деталей решения;
  • нажать кнопку «Вычислить»;
  • (опционально) дважды щелкнуть на полученных изображениях для их копирования в буфер обмена.


Рис. 14.

Примеры моделирования поведения системы Лоренца программой Lorenz приведены на рис.15.


Рис. 15.

Литература

  1. Архангельский А.Я. Программирование в C++ Builder. – М.: Бином-Пресс, 2010. – 1304 с.
  2. Кирьянов Д. Mathcad 15/Mathcad Prime 1.0. – СПб.: БХВ-Петербург, 2012. – 432 с.
  3. Арнольд В.И. Обыкновенные дифференциальные уравнения. – М.: МЦНМО, 2012. – 344 с.

Список программ

  1. MassTextReplacer - программа для массового изменения текстовых файлов ;
  2. Lorenz - программа для изучения системы Лоренца;

До настоящего момента мы изучали фракталы, которые являются статическими фигурами. Наш подход вполне приемлем до тех пор, пока не возникает необходимость рассмотрения таких природных явлений, как падающие потоки воды, турбулентные завихрения дыма, метеосистемы и потоки на выходе реактивных двигателей. В этих случаях один-единственный фрактал соответствует моментальному снимку данного феномена. Структуры, изменяющиеся во времени, мы определяем как динамические системы. Интуитивно понятно, что динамической противоположностью фрактала является хаос. Это означает, что хаос описывает состояние крайней непредсказуемости, возникающей в динамической системе, в то время как фрактальность описывает крайнюю иррегулярность или изрезанность, присущую геометрической конфигурации.

Достаточно скоро стало ясно, что многие хаотические динамические системы, описыващие феномены окружащего нас мира, устроены очень сложно и не могут быть в полной мере представлены традиционными методами математического анализа. По-видимому, нет никакой возможности получить математические выражения для решений в замкнутом виде, даже если использовать бесконечные ряды или специальные функции.

Рассмотрим знаменитый пример, весьма наглядно демонстрирующий, что стоит за термином «хаотическая динамика». Эдвард Лоренц из Массачусетского технологического института в 1961 году занимался численными исследованиями метеосистем, в частности моделированием конвекционных токов в атмосфере.

Рис. 6.1. Аттрактор Лоренца

Он написал программу для решения следующей системы дифференциальных уравнений:

В дальнейших расчетах параметры постоянны и принимают значения

Согласно описанию эксперимента, принадлежащему самому Лоренцу, он вычислял значения решения в течение длительного времени, а затем остановил счет. Его заинтересовала некоторая особенность решения, которая возникала где-то в середине интервала счета, и поэтому он повторил вычисления с этого момента. Результаты повторного счета, очевидно, совпали бы с результатами первоначального счета, если бы начальные значения для повторного счета в точности были равны полученным ранее значениям для этого момента времени.

Рис. 6.2. Результаты численного эксперимента Лоренца

Лоренц слегка изменил эти значения, уменьшив число верных десятичных знаков. Ошибки, введенные таким образом, были крайне невелики. Но самое неожиданное было впереди. Вновь сосчитанное решение некоторое время хорошо согласовывалось со старым. Однако, по мере счета расхождение возрастало, и постепенно стало ясно, что новое решение вовсе не напоминает старое (см. рис. 6.1, 6.2).

Лоренц вновь повторял и проверял вычисления (вероятно, не доверяя компьютеру), прежде чем осознал важность эксперимента. То, что он наблюдал, теперь называется существенной зависимостью от начальных условий - основной чертой, присущей хаотической динамике. Существенную зависимость иногда называют эффектом бабочки. Такое название относится к невозможности делать долго статье «Предсказуемость: может ли взмах крылышек бабочки в Бразилии привести к образованию торнадо в опубликованной в 1979 году .

Несмотря на большую значимость эксперимента Лоренца, в настоящем тексте не будут рассматриваться модели, связанные с динамическими системами, описываемыми дифференциальными уравнениями. Напротив, мы будем рассматривать наиболее простые модели хаотической динамики. Это означает, что мы ограничимся изучением только дискретных динамических систем, а не непрерывных типа странного аттрактора Лоренца, описанного выше. Но не расстраивайтесь. Обнаружение хаотической динамики в поведении дискретных динамических систем столь же неожиданно, как и в непрерывном случае. Многие известные и эффектные графические примеры соответсвуют именно дискретным системам. В числе их можно упомянуть знаменитое и вездесущее множество Мандельброта и сопутствующие ему множества Жюлиа.


Читайте также: