Как вычислить проекцию вектора на ось. Проекции векторов на координатные оси. Решить задачу на векторы самостоятельно, а затем посмотреть решение

Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников сопряжено с громоздкими построениями. Универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Осью называют прямую линию, которой приписано определенное направление.

Проекция вектора на ось является скалярной величиной, которая опреде­ляется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.

Проекция вектора считается положительной, если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной, если направление от начала проекции к ее концу противоположно положительному направлению оси.

Таким образом, проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.

Рассмотрим ряд случаев проецирования сил на ось:

Вектор силы F (рис. 15) составляет с положительным напра­влением оси х острый угол .

Чтобы найти проекцию, из начала и конца вектора силы опускаем перпендикуляры на ось ; получаем

1. F x = F cos α

Проекция вектора в данном случае положительна

Сила F (рис. 16) составляет с положительным направлением оси х тупой угол α.

Тогда F x = F cos α, но так как α = 180 0 - φ,

F x = F cos α = F cos180 0 - φ =- F cos φ.

Проекция силы F на ось в данном случае отрицательна.

Сила F (рис. 17) перпендикулярна оси .

Проекция силы F на ось х равна нулю

F x = F cos 90° = 0.

Силу, расположенную на плоскости хоу (рис. 18), можно спроектировать на две координатные оси ох и оу .

Силу F можно разложить на составляющие: F x и F y . Модуль вектора F x равен проекции вектора F на ось ox , а модуль вектора F y равен проекции вектора F на ось oy .

Из ΔОАВ : F x =F cos α, F x =F sin α.

Из ΔОАС : F x =F cos φ, F x =F sin φ.

Модуль силы можно найти по теореме Пифагора:

Проекция векторной суммы или равнодействующей на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.



Рассмотрим сходящиеся силы F 1 , F 2 , F 3 , и F 4 , (рис. 19, а). Геометрическая сумма, или равнодействующая, этих сил F определяется замыкающей стороной силового многоугольника

Опустим из вершин силового многоугольника на ось x перпендикуляры.

Рассматривая полученные проекции сил непосредственно из выполненного построения, имеем

F = F 1x +F 2x +F 3x + F 4x

где n - число слагаемых векторов. Их проекции входят вышеуказанное уравнение с соответствующим знаком.

В плоскости геометрическую сумму сил можно спроецировать на две координатные оси, а в пространстве – соответственно на три.

На чертежах изображения геометрических тел строятся при использовании метода проекции. Но для этого одного изображения недостаточно, необходимо минимум две проекции. С помощью них и определяются точки в пространстве. Следовательно, нужно знать, как найти проекцию точки.

Проекция точки

Для этого потребуется рассмотреть пространство двугранного угла, с расположенной внутри точкой (А). Здесь используются горизонтальная П1 и вертикальная П2 плоскости проекций. Точка (А) проецируется на проекционные плоскости ортогонально. Что касается перпендикулярных проецирующих лучей, то они объединяются в проецирующую плоскость, перпендикулярную плоскостям проекций. Таким образом, при совмещении горизонтальной П1 и фронтальной П2 плоскостей путем вращения по оси П2 / П1, получаем плоский чертеж.

Затем перпендикулярно оси показывается линия с расположенными на ней точками проекции. Так получается комплексный чертеж. Благодаря построенным отрезкам на нем и вертикальной линии связи, легко можно определять положение точки относительно проекционных плоскостей.

Чтобы было проще понять, как найти проекцию, необходимо рассмотреть прямоугольный треугольник. Его короткая сторона является катетом, а длинная – гипотенузой. Если выполнить на гипотенузу проекцию катета, то она поделится на два отрезка. Для определения их величины, нужно выполнить расчет набора исходных данных. Рассмотрим на данном треугольнике, способы расчета основных проекций.

Как правило, в данной задаче указывают длину катета N и длину гипотенузы D, чью проекцию и требуется найти. Для этого узнаем, как найти проекцию катета.

Рассмотрим способ нахождения длины катета (А). Учитывая, что среднее геометрическое от проекции катета и длины гипотенузы равняется искомой нами величине катета: N = √(D*Nd).

Как найти длину проекции

Корень из произведения можно найти возведением в квадрат значения длины искомого катета (N), а затем поделенного на длину гипотенузы: Nd = (N / √ D)² = N² / D. При указании в исходных данных значений только катетов D и N, длину проекции следует находить при помощи теоремы Пифагора.
Найдем длину гипотенузы D. Для этого нужно воспользоваться значениями катетов √ (N² + T²), а затем подставить полученное значение в следующую формулу нахождения проекции: Nd = N² / √ (N² + T²).

Когда в исходных данных указаны данные о длине проекции катета RD, а также данные о величине гипотенузы D, следует вычислять длину проекции второго катета ND при помощи простой формулы вычитания: ND = D – RD.

Проекция скорости

Рассмотрим, как найти проекцию скорости. Для того чтобы заданный вектор представлял описание движения, его следует разместить в проекции на координатные оси. Различают одну координатную ось (луч), две координатные оси (плоскость) и три координатные оси (пространство). При нахождении проекции необходимо из концов вектора опустить перпендикуляры на оси.

Для того чтобы уяснить значения проекции, необходимо узнать, как найти проекцию вектора.

Проекция вектора

При движении тела перпендикулярно относительно оси, проекция будет представлена в виде точки, и иметь значение равное нулю. Если же движение осуществляется параллельно координатной оси, то проекция будет совпадать с модулем вектора. В случае, когда тело движется таким образом, что вектор скорости направлен под углом φ относительно оси (х), проекция на данную ось будет являться отрезком: V(x) = V cos(φ), где V – это модель вектора скорости.Когда направления вектора скорости и координатной оси совпадают, то проекция является положительной, и наоборот.

Возьмем следующее координатное уравнение: x = x(t), y = y(t), z = z(t). В данном случае функция скорости будет спроецирована на три оси и будет иметь следующий вид: V(x) = dx / dt = x"(t), V(y) = dy / dt = y"(t), V(z) = dz / dt = z"(t). Отсюда следует, что для нахождения скорости необходимо брать производные. Сам же вектор скорости выражается уравнением такого вида: V = V(x) i + V(y) j + V(z) k. Здесь i, j, k являются единичными векторами координатных осей x, y, z соответственно. Таким образом, модуль скорости вычисляется по следующей формуле: V = √ (V(x) ^ 2 + V(y) ^ 2 + V(z) ^ 2).

Введение…………………………………………………………………………3

1. Значение вектора и скаляра………………………………………….4

2. Определение проекции, оси и координатой точки………………...5

3. Проекция вектора на ось……………………………………………...6

4. Основная формула векторной алгебры……………………………..8

5. Вычисление модуля вектора по его проекциям…………………...9

Заключение……………………………………………………………………...11

Литература……………………………………………………………………...12

Введение:

Физика неразрывно связана с математикой. Математика дает физике средства и приемы общего и точного выражения зависимости между физическими величинами, которые открываются в результате эксперимента или теоретических исследований.Ведь основной метод исследований в физике – экспериментальный. Это значит – вычисления ученый выявляет с помощью измерений. Обозначает связь между различными физическими величинами. Затем, все переводится на язык математики. Формируется математическая модель. Физика - есть наука, изучающая простейшие и вместе с тем наиболее общие закономерности. Задача физики состоит в том, чтобы создать в нашем сознании такую картину физического мира, которая наиболее полно отражает свойства его и обеспечивает такие соотношения между элементами модели, какие существуют между элементами.

Итак, физика создает модель окружающего нас мира и изучает ее свойства. Но любая модель является ограниченной. При создании моделей того или иного явления принимаются во внимание только существенные для данного круга явлений свойства и связи. В этом и заключается искусство ученого - из всего многообразия выбрать главное.

Физические модели являются математическими, но не математика является их основой. Количественные соотношения между физическими величинами выясняются в результате измерений, наблюдений и экспериментальных исследований и лишь выражаются на языке математики. Однако другого языка для построения физических теорий не существует.

1. Значение вектора и скаляра.

В физике и математике вектор - это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент, импульс, напряженность электрического и магнитного полей. Их можно противопоставить другим величинам, таким, как масса, объем, давление, температура и плотность, которые можно описать обычным числом, и называются они "скалярами" .

Они записываются либо буквами обычного шрифта, либо цифрами (а, б, t, G, 5, −7….). Скалярные величины могут быть положительными и отрицательными. В то же время некоторые объекты изучения могут обладать такими свойствами, для полного описания которых знание только числовой меры оказывается недостаточным, необходимо ещё охарактеризовать эти свойства направлением в пространстве. Такие свойства характеризуются векторными величинами (векторами). Векторы, в отличие от скаляров, обозначаются буквами жирного шрифта: a, b, g, F, С ….
Нередко вектор обозначают буквой обычного (нежирного) шрифта, но со стрелкой над ней:


Кроме того, часто вектор обозначают парой букв (обычно заглавных), причём первая буква обозначает начало вектора, а вторая - его конец.

Модуль вектора, то есть длину направленного прямолинейного отрезка, обозначают теми же буквами, как и сам вектор, но в обычном (не жирном) написании и без стрелки над ними, либо точно также как и вектор (то есть жирным шрифтом или обычным, но со стрелкой), но тогда обозначение вектора заключается в вертикальные черточки.
Вектор – сложный объект, который одновременно характеризуется и величиной и направлением.

Не бывает также положительных и отрицательных векторов. А вот равными между собой векторы быть могут. Это когда, например, aиb имеют одинаковые модули и направлены в одну сторону. В этом случае справедлива запись a = b. Надо также иметь в виду, что перед символом вектора может стоять знак минус, например, - с, однако, этот знак символически указывает на то, что вектор -с имеет такой же модуль, как и вектор с, но направлен в противоположную сторону.

Вектор -с называют противоположным (или обратным) вектору с.
В физике же каждый вектор наполнен конкретным содержанием и при сравнении однотипных векторов (например, сил) могут иметь существенное значение и точки их приложения.

2.Определение проекции, оси и координатой точки.

Ось – это прямая, которой придается какое–то направление.
Ось обозначается какой-либо буквой: X , Y , Z , s , t … Обычно на оси выбирается (произвольно) точка, которая называется началом отсчета и, как правило, обозначается буквой О. От этой точки отсчитываются расстояния до других интересующих нас точек.

Проекцией точки на ось называется основание перпендикуляра, опущенного из этой точки на данную ось. То есть, проекцией точки на ось является точка.

Координатой точки на данной оси называется число, абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между началом оси и проекцией точки на эту ось. Это число берется со знаком плюс, если проекция точки располагается в направлении оси от ее начала и со знаком минус, если в противоположном направлении.

3.Проекция вектора на ось.

Проекцией вектора на ось называется вектор, который получается в результате перемножения скалярной проекции вектора на эту ось и единичного вектора этой оси. Например, если а x – скалярная проекция вектора а на ось X, то а x ·i - его векторная проекция на эту ось.

Обозначим векторную проекцию также, как и сам вектор, но с индексом той оси на которую вектор проектируется. Так, векторную проекцию вектора а на ось Х обозначим а x (жирная буква, обозначающая вектор и нижний индекс названия оси) или

(нежирная буква, обозначающая вектор, но со стрелкой наверху (!) и нижний индекс названия оси).

Скалярной проекцией вектора на ось называется число , абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между проекциями точки начала и точки конца вектора. Обычно вместо выражения скалярная проекция говорят просто – проекция . Проекция обозначается той же буквой, что и проектируемый вектор (в обычном, нежирном написании), с нижним (как правило) индексом названия оси, на которую этот вектор проектируется. Например, если на ось Х проектируется вектора, то его проекция обозначается а x . При проектировании этого же вектора на другую ось, если ось Y , его проекция будет обозначаться а y .

Чтобы вычислить проекцию вектора на ось (например, ось X) надо из координаты точки его конца вычесть координату точки начала, то есть

а x = х к − x н.

Проекция вектора на ось - это число. Причем, проекция может быть положительной, если величина х к больше величины х н,

отрицательной, если величина х к меньше величины х н

и равной нулю, если х к равно х н.

Проекцию вектора на ось можно также найти, зная модуль вектора и угол, который он составляет с этой осью.

Из рисунка видно, что а x = а Cos α

То есть, проекция вектора на ось равна произведению модуля вектора на косинус угла между направлением оси и направлением вектора . Если угол острый, то
Cos α > 0 и а x > 0, а, если тупой, то косинус тупого угла отрицателен, и проекция вектора на ось тоже будет отрицательна.

Углы, отсчитываемые от оси против хода часовой стрелки, принято считать положительными, а по ходу - отрицательными. Однако, поскольку косинус – функция четная, то есть, Cos α = Cos (− α), то при вычислении проекций углы можно отсчитывать как по ходу часовой стрелки, так и против.

Чтобы найти проекцию вектора на ось надо модуль этого вектора умножить на косинус угла между направлением оси и направлением вектора.

4. Основная формула векторной алгебры.

Спроектируемвектор а на оси Х и Y прямоугольной системы координат. Найдем векторные проекции вектора а на эти оси:

а x = а x ·i, а y = а y ·j.

Но в соответствии справилом сложения векторов

а = а x + а y .

а = а x ·i + а y ·j.

Таким образом, мы выразили вектор через его проекции и орты прямоугольной системы координат (или через его векторные проекции).

Векторные проекции а x и а y называютсясоставляющими или компонентами вектора а. Операция, которую мы выполнили, называется разложением вектора по осямпрямоугольной системы координат.

Если вектор задан в пространстве, то

а = а x ·i + а y ·j + а z ·k.

Эта формула называется основной формулой векторной алгебры. Конечно, ее можно записать и так.

Определение 1. На плоскости параллельной проекцией точки А на ось l называется точка - точка пересечения оси l с прямой, проведенной через точку А параллельно вектору, задающему направление проектирования.

Определение 2. Параллельной проекцией вектора на ось l (на вектор) называется координата вектора, относительно базиса оси l, где точки и - параллельные проекции соответственно точек А и В на ось l (рис. 1).

Согласно определению имеем

Определение 3. если и базис оси l декартов, то есть, то проекция вектора на ось l называется ортогональной (рис. 2).

В пространстве определение 2 проекции вектора на ось остается в силе, только направление проектирования задается двумя неколлинеарными векторами (рис. 3).

Из определения проекции вектора на ось вытекает, что каждая координата вектора есть проекция этого вектора на ось, определяемую соответствующим базисным вектором. При этом направление проектирования задается двумя другими базисными векторами, если проектирование ведется (рассматривается) в пространстве, или другим базисным вектором, если проектирование рассматривается на плоскости (рис. 4).

Теорема 1. Ортогональная проекция вектора на ось l равна произведению модуля вектора на косинус угла между положительным направлением оси l и, т. е.


С другой стороны

Из находим

Подставив АС в равенство (2), получим

Так как числа x и одного знака в обоих рассматриваемых случаях ((рис. 5, а) ; (рис. 5, б) , то из равенства (4) следует

Замечание. В дальнейшем мы будем рассматривать только ортогональную проекцию вектора на ось и поэтому слово «орт» (ортогональная) в обозначении будем опускать.

Приведем ряд формул, которые используются в дальнейшем при решении задач.

а)Проекция вектора на ось.

Если, то ортогональная проекция на вектор согласно формуле (5) имеет вид

в) Расстояние от точки до плоскости.

Пусть б - данная плоскость с нормальным вектором, M - данная точка,

d - расстояние от точки М до плоскости б (рис. 6).

Если N- произвольная точка плоскости б, а и - проекции точек Mи Nна ось, то

  • г) Расстояние между скрещивающимися прямыми.

Пусть а и b- данные скрещивающиеся прямые, - перпендикулярный им вектор, А и В - произвольные точки прямых а и b соответственно (рис. 7), и - проекции точек Aи Bна, тогда

д) Расстояние от точки до прямой.

Пусть l - данная прямая с направляющим вектором, M - данная точка,

N - ее проекция на прямую l , тогда - искомое расстояние (рис. 8).

Если А - произвольная точка прямой l , то в прямоугольном треугольнике MNAгипотенуза MAи катет могут быть найдены. Значит,


е) Угол между прямой и плоскостью.

Пусть - направляющий вектор данной прямой l , - нормальный вектор данной плоскости б, - проекция прямой l на плоскость б (рис. 9).

Как известно, угол ц между прямой l и ее проекцией на плоскость б называется углом между прямой и плоскостью. Имеем

Приведем примеры решения метрических задач векторно-координатным методом.

Пусть в пространстве задана ось l, т. е. направленная прямая.

Проекцией точки М на ось l называется основание М 1 перпендикуляра ММ 1 , опущенного из точки на ось.

Точка М 1 есть точка пересечения оси l с плоскостью, проходящей через точку М перпендикулярно оси (см. рис. 7).

Если точка М лежит на оси l, то проекция точки М на ось совпадает с М1.

Пусть АВ - произвольный вектор (АВ¹ 0). Обозначим через А 1 и b 1 проекции на ось l соответственно начала А и конца В вектора АВ и рассмотрим векторА 1 В 1

Проекцией вектора АВ на ось l называет ся положительное число |A 1 B 1 | , есливектор А 1 В 1 и ось l одинаково направлены и отрица тельное число - |A 1 B 1 | , если вектор А 1 В 1 и ось l противоположно направлены (см. рис. 8). Если точки a 1 и b 1 совпадают (А 1 В 1 =0), то проекция вектора АВ равна 0.

Проекция вектора АВ на ось l обозначается так: пр l АВ. Если АВ=0 или АВ^l , то пр l АВ=0.

Угол j между вектором а и осью l (или угол между двумя векторами) изображен на рисунке 9. Очевидно,0£j£p

Рассмотрим некоторые основные свойства проекций.

Свойство 1. Проекция вектора a на ось l равна произведению модуля вектора aна косинус угла j между вектором и осью, т. е. пр l a =|a | cos j .

Следствие 5.1. Проекция вектора на ось положительна (отрицательна), есливектор образует с осью острый (тупой) угол, и равна нулю, если этот угол - прямой.

Следствие 5.2. Проекции равных векторов на одну и ту же ось равны между собой.

Свойство 2. Проекция суммы нескольких векторов на одну и ту же ось равна сумме их проекций на эту ось

Свойство 3. При умножении вектора а на число А его проекция на ось также умножается на это число, т. е.

Таким образом, линейные операции над векторами приводят к соответствующим линейным операциям над проекциями этих векторов.

5.4. Разложение вектора по ортам координатных осей.
Модуль вектора. Направляющие косинусы.

Рассмотрим в пространстве прямоугольную систему координат Oxyz. Выделим на координатных осях Ох, Оу и Oz единичные векторы (орты), обозначаемые i, j , k соответственно (см. рис. 12).

Выберем произвольный вектор а пространства и совместим его начало с началом координат: а=ОМ.

Найдем проекции вектора а на координатные оси. Проведем через конецвектора ОМ плоскости, параллельные координатным плоскостям. Точки пересечения этих плоскостей с осями обозначим соответственно через М 1 , М 2 и Мз.Получим прямоугольный параллелепипед, одной из диагоналей которого является вектор ОМ. Тогда пр х а=|OM 1 |, np y a = |ОМ 2 |, пр z а=|ОМз|. По определению суммы нескольких векторов находим а = ОМ 1 + M 1 N + NM.

А так как M 1 N=OM 2 , NM =ОМз, то


а=ОМ 1 + ОМ 2 + ОМ 3 (5.1)

Обозначим проекции вектора а=ОМ на оси Ох, Оу и Oz соответственно через а х, а у и a z , т.е. |OM 1 | = а х,|ОМ 2 | = а у, |ОМ 3 | = а z . Тогда из равенств (5.1) и (5.2) получаем

a=a x i+a y j+a z k (5.3)

Эта формула является основной в векторном исчислении и называетсяразложением вектора по ортам координатных осей. Числа а х, а у, a z называются координатами вектора а, т. е. координаты вектора есть его проекции на соответствующие координатные оси.

Векторное равенство (5.3) часто записывают в символическом виде: a = (a x ;a y ;a z).

Равенство b = (b x ;b y ; b z) означает, что b = b х i +b у j + b z k . Зная проекциивектора а, можно легко найти выражение для модуля вектора. На основании теоремы о длине диагонали прямоугольного параллелепипеда можно написать

т. е. модуль вектора равен квадратному корню из суммы квадратов его проекций на оси координат.

Пусть углы вектора а с осями Ох, Оу и Oz соответственно равны a,b,g. По свойству проекции вектора на ось, имеем

Или, что то же самое,

Числа называются направляющими косинусами вектора а.

Подставим выражения (5.5) в равенство (5.4), получаем

Сократив на получим соотношение

т. е. сумма квадратов направляющих косинусов ненулевого вектора равна единице.

Легко заметить, что координатами единичного вектора e являются числа

Итак, задав координаты вектора, всегда можно определить его модуль и направление, т.е. сам вектор.

Читайте также: