Как работать с диаграммой эйлера венна. Диаграмма Эйлера_Венна. презентация к уроку по математике (3 класс) на тему. Разность двух множеств. Дополнение

История

Определение 1

Леонарду Эйлеру задали вопрос: можно ли, прогуливаясь по Кенигсбергу, обойти через все мосты города, дважды не проходя ни через один из них. План города с семью мостами прилагался.

В письме знакомому итальянскому математику Эйлер дал краткое и красивое решение проблемы кенигсбергских мостов: при таком расположении задача неразрешима. При этом он указал, что вопрос показался ему интересным, т.к. «для его решения недостаточны ни геометрия, ни алгебра...» .

При решении многих задач Л. Эйлер изображал множества с помощью кругов, поэтому они и получили название «круги Эйлера» . Этим методом ещё ранее пользовался немецкий философ и математик Готфрид Лейбниц, который использовал их для геометрического объяснения логических связей между понятиями, но при этом чаще использовал линейные схемы. Эйлер же достаточно основательно развил метод. Особенно знаменитыми графические методы стали благодаря английскому логику и философу Джону Венну, который ввел диаграммы Венна и подобные схемы часто называют диаграммами Эйлера-Венна . Используются они во многих областях, например, в теории множеств, теории вероятности, логике, статистике и информатике.

Принцип построения диаграмм

До сих пор диаграммы Эйлера-Венна широко используют для схематичного изображения всех возможных пересечений нескольких множеств. На диаграммах изображают все $2^n$ комбинаций n свойств. Например, при $n=3$ на диаграмме изображают три круга с центрами в вершинах равностороннего треугольника и одинаковым радиусом, который приближенно равен длине стороны треугольника.

Логические операции задают таблицы истинности. На диаграмме изображается круг с названием множества, которое он представляет, например, $A$. Область в середине круга $A$ будет отображать истинность выражения $A$, а область вне круга -- ложь. Для отображения логической операции заштриховывают только те области, в которых значения логической операции при множествах $A$ и $B$ истинны.

Например, конъюнкция двух множеств $A$ и $B$ истинна только в том случае, когда оба множества истинны. В таком случае на диаграмме результатом конъюнкции $A$ и $B$ будет область в середине кругов, которая одновременно принадлежит множеству $A$ и множеству $B$ (пересечению множеств).

Рисунок 1. Конъюнкция множеств $A$ и $B$

Использование диаграмм Эйлера-Венна для доказательства логических равенств

Рассмотрим, как применяется метод построения диаграмм Эйлера-Венна для доказательства логических равенств.

Докажем закон де Моргана, который описывается равенством:

Доказательство:

Рисунок 4. Инверсия $A$

Рисунок 5. Инверсия $B$

Рисунок 6. Конъюнкция инверсий $A$ и $B$

После сравнения области для отображения левой и правой части видим, что они равны. Из этого следует справедливость логического равенства. Закон де Моргана доказан с помощью диаграмм Эйлера-Венна.

Решение задачи поиска информации в Интернет с помощью диаграмм Эйлера-Венна

Для осуществления поиска информации в Интернет удобно использовать поисковые запросы с логическими связками, аналогичными по смыслу союзам "и", "или" русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью диаграмм Эйлера-Венна.

Пример 1

В таблице приведены примеры запросов к поисковому серверу. Каждый запрос имеет свой код -- буква от $A$ до $B$. Нужно расположить коды запросов в порядке убывания количества найденных страниц по каждому запросу.

Рисунок 7.

Решение:

Построим для каждого запроса диаграмму Эйлера-Венна:

Рисунок 8.

Ответ: БВА.

Решение логической содержательной задачи с помощью диаграмм Эйлера-Венна

Пример 2

За зимние каникулы из $36$ учеников класса $2$ не были ни в кино, ни в театре, ни в цирке. В кино сходило $25$ человек, в театр -- $11$, в цирк -- $17$ человек; и в кино, и в театре -- $6$; и в кино и в цирк -- $10$; и в театр и в цирк -- $4$.

Сколько человек побывало и в кино, и в театре, и в цирке?

Решение:

Обозначим количество ребят, побывавших и в кино, и в театре, и в цирке -- $x$.

Построим диаграмму и узнаем количество ребят в каждой области:

Рисунок 9.

Не были ни в театре, ни в кино, ни в цирке -- $2$ чел.

Значит, $36 - 2 = 34$ чел. побывали на мероприятиях.

В кино и театр сходило $6$ чел., значит, только в кино и театр ($6 - x)$ чел.

В кино и цирк сходило $10$ чел., значит, только в кино и цирк ($10 - x$) чел.

В театр и цирк сходило $4$ чел., значит, только в театре и цирк ($4 - x$) чел.

В кино сходило $25$ чел., значит, из них только в кино сходило $25 - (10 - x) - (6 - x) - x = (9+x)$.

Аналогично, только в театр сходило ($1+x$) чел.

Только в цирк сходило ($3+x$) чел.

Итак, сходили в театр, кино и цирк:

$(9+x)+(1+x)+(3+x)+(10-x)+(6-x)+(4-x)+x = 34$;

Т.е. только один человек сходил и в театр, и в кино, и в цирк.

Wikispaces was founded in 2005 and has since been used by educators, companies and individuals across the globe.

Unfortunately, the time has come where we have had to make the difficult business decision to end the Wikispaces service.

We first announced the site closure in January 2018, through a site-wide banner that appeared to all logged-in users and needed to be clicked on to dismiss

During the closure period a range of banners were shown to users, including a countdown banner in the final month. Additionally, the home page of Wikispaces.com became a blog, detailing the reasons for the closure. Private Label Site Administrators were contacted separately regarding the closure

Wikispaces Tier Closedown Date
Classroom and Free Wikis end of service 31st July 2018
Plus and Super Wikis end of service 30th September 2018
Private Label Wikis end of service 31st January 2019

Why has Wikispaces closed?

Approximately 18 months ago, we completed a technical review of the infrastructure and software we used to serve Wikispaces users. As part of the review, it became apparent that the required investment to bring the infrastructure and code in line with modern standards was very substantial. We explored all possible options for keeping Wikispaces running but had to conclude that it was no longer viable to continue to run the service in the long term. So, sadly, we had to close the site - but we have been touched by the messages from users all over the world who began creating wikis with it and now running them on new platforms.

We would like to take this opportunity to thank you for your support over the years.

Разделы: Информатика

1. Введение

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Рис.3 Рис.4

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Рис.5 Рис.6 Рис.7

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Код Запрос
А (Муха & Денежка) | Самовар
Б Муха & Денежка & Базар & Самовар
В Муха | Денежка | Самовар
Г Муха & Денежка & Самовар

Для каждого запроса построим диаграмму Эйлера-Венна:

Запрос А Запрос Б

Запрос В

Запрос Г

Ответ: ВАГБ.

Задача В12 из демо-версии ЕГЭ-2013.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц (в тысяч)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Ф – количество страниц (в тысячах) по запросу Фрегат ;

Э – количество страниц (в тысячах) по запросу Эсминец ;

Х – количество страниц (в тысячах) по запросу, в котором упоминается Фрегат и не упоминается Эсминец ;

У – количество страниц (в тысячах) по запросу, в котором упоминается Эсминец и не упоминается Фрегат.

Построим диаграммы Эйлера-Венна для каждого запроса:

Запрос Диаграмма Эйлера-Венна Количество страниц
Фрегат | Эсминец Рис.12

3400
Фрегат & Эсминец Рис.13

900
Фрегат Рис.14 2100
Эсминец Рис.15 ?

Согласно диаграммам имеем:

  1. Х+900+У = Ф+У = 2100+У = 3400. Отсюда находим У = 3400-2100 = 1300.
  2. Э = 900+У = 900+1300= 2200.

Ответ: 2200.

6. Решение логических содержательных задач методом диаграмм Эйлера-Венна

В классе 36 человек. Ученики этого класса посещают математический, физический и химический кружки, причем математический кружок посещают 18 человек, физический - 14 человек, химический - 10. Кроме того, известно, что 2 человека посещают все три кружка, 8 человек - и математический и физический, 5 и математический и химический, 3 - и физический и химический.

Сколько учеников класса не посещают никаких кружков?

Для решения данной задачи очень удобным и наглядным является использование кругов Эйлера.

Самый большой круг – множество всех учеников класса. Внутри круга три пересекающихся множества: членов математического (М ), физического (Ф ), химического (Х ) кружков.

Пусть МФХ – множество ребят, каждый из которых посещает все три кружка. МФ¬Х – множество ребят, каждый из которых посещает математический и физический кружки и не посещает химический. ¬М¬ФХ - множество ребят, каждый из которых посещает химический кружок и не посещает физический и математический кружки.

Аналогично введем множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Известно, что все три кружка посещают 2 человека, следовательно, в область МФХ впишем число 2. Т.к. 8 человек посещают и математический и физический кружки и среди них уже есть 2 человека, посещающих все три кружка, то в область МФ¬Х впишем 6 человек (8-2). Аналогично определим количество учащихся в остальных множествах:

Просуммируем количество человек по всем областям: 7+6+3+2+4+1+5=28. Следовательно, 28 человек из класса посещают кружки.

Значит, 36-28 = 8 учеников не посещают кружки.

После зимних каникул классный руководитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников класса двое не были ни в кино. ни в театре, ни в цирке. В кино побывало 25 человек, в театре - 11, в цирке 17 человек; и в кино, и в театре - 6; и в кино и в цирке - 10; и в театре и в цирке - 4.

Сколько человек побывало и в кино, и в театре, и в цирке?

Пусть х – количество ребят, которые побывали и в кино, и в театре, и в цирке.

Тогда можно построить следующую диаграмму и посчитать количество ребят в каждой области:

В кино и театре побывало 6 чел., значит, только в кино и театре (6-х) чел.

Аналогично, только в кино и цирке (10-х) чел.

Только в театре и цирке (4-х) чел.

В кино побывало 25 чел., значит, из них только в кино были 25 - (10-х) – (6-х) – х = (9+х).

Аналогично, только в театре были (1+х) чел.

Только в цирке были (3+х) чел.

Не были в театре, кино и цирке – 2 чел.

Значит, 36-2=34 чел. побывали на мероприятиях.

С другой стороны можем просуммировать количество человек, которые были в театре, кино и цирке:

(9+х)+(1+х)+(3+х)+(10-х)+(6-х)+(4-х)+х = 34

Отсюда следует, что только один человек побывал на всех трех мероприятиях.

Таким образом, круги Эйлера (диаграммы Эйлера-Венна) находят практическое применение при решении задач в формате ЕГЭ и ГИА и при решении содержательных логических задач.

Литература

  1. В.Ю. Лыскова, Е.А. Ракитина. Логика в информатике. М.: Информатика и Образование, 2006. 155 с.
  2. Л.Л. Босова. Арифметические и логические основы ЭВМ. М.: Информатика и образование, 2000. 207 с.
  3. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 8 класса: БИНОМ. Лаборатория знаний, 2012. 220 с.
  4. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 9 класса: БИНОМ. Лаборатория знаний, 2012. 244 с.
  5. Сайт ФИПИ: http://www.fipi.ru/

ДИАГРАММЫ ВЕННА - графический способ задания и анализа логико-математических теорий и их формул. Строятся путем разбиения части плоскости на ячейки (подмножества) замкнутыми контурами (кривыми Жордана). В ячейках представляется информация, характеризующая рассматриваемую теорию или формулу. Цель построения диаграмм не только иллюстративная, но и операторная - алгоритмическая переработка информации. Аппарат диаграмм Венна обычно используется вместе с аналитическим.

Способ разбиения, количество ячеек, а также проблемы записи в них информации зависят от рассматриваемой теории, которая тоже может вводиться (описываться) графически - некоторыми диаграммами Венна, задаваемыми первоначально, в частности, вместе с алгоритмами их преобразований, когда одни диаграммы могут выступать как операторы, действующие на другие диаграммы. Например, в случае классической логики высказываний для формул, составленных из п различных пропозициональных переменных, часть плоскости (универсум) делится на 2" ячеек, соответствующих конституэнтам (в конъюнктивной или в дизъюнктивной форме). Диаграммой Венна каждой формулы считается такая плоскость, в ячейках которой ставится (или не ставится) звездочка *. Так, формулу

(¬ а& ¬ b&c) V (а&¬ b&c) V (¬ a&b&¬ c)

с тремя пропозициональными переменными a, b и c определяет диаграмма, изображенная на рисунке, где звездочки в ячейках соответствуют конъюнктивным составляющим этой совершенной нормальной дизъюнктивной формулы. Если отмеченных звездочками ячеек нет, то диаграмме Венна сопоставляется, напр., тождественно ложная формула, скажем (a&¬ a).

Индуктивный способ разбиения плоскости на 2" ячеек восходит к трудам английского логика Дж. Венна, называется способом Венна и состоит в следующем:

1. При n = 1, 2, 3 очевидным образом используются окружности. (На приведенном рисунке n = 3.)

2. Предположим, что при n = k (k ≥ 3), указано такое рас-положение к фигур, что плоскость разделена на 2k ячеек.

Тогда для расположения k+1 фигуры на этой плоскости достаточно, во-первых, выбрать незамкнутую кривую (ср без точек самопересечения, т.е. незамкнутую кривую Жордана, принадлежащую границам всех 2k ячеек и имеющую с каждой из этих границ только один общий кусок. Во-вторых, обвести φ замкнутой кривой Жордана Ψ k+1 так, чтобы кривая Ψ k+1 проходила через все 2k ячейки и пересекала границу каждой ячейки только два раза. Таким образом получится расположение n= k+1 фигур такое, что плоскость разделится на 2k+1 ячеек.

Для представления других логико-математических теорий метод венновских диаграмм расширяется. Сама теория записывается так, чтобы выделить элементы ее языка в пригодной для графического изображения форме. Напр., атомарные формулы классической логики предикатов записываются как слова вида P(Y1..Yr), где P - предикатная, а Y1,..., Yr - предметные переменные, не обязательно различные; слово Y1,..., Yr - предметный инфикс. Очевидный теоретико-множественный характер диаграмм Венна позволяет представлять и исследовать с их помощью, в частности, теоретико-множественные исчисления, напр., исчисление ZF теории множеств Цермело-Френкеля. Графические методы в логике и математике развивались издавна. Таковы, в частности, логический квадрат, круги Эйлера и оригинальные диаграммы Л. Кэрролла. Однако метод диаграмм Венна существенно отличается от известного метода кругов Эйлера, используемого в традиционной силлогистике. В основе венновских диаграмм лежит идея разложения булевской функции на конституэнты - центральная в алгебре логики, обуславливающая их оперативный характер. Свои диаграммы Венн применял прежде всего для решения задач логики классов. Его диаграммы можно эффективно использовать и для решения задач логики высказываний и предикатов, обзора следствий из посылок, решения логических уравнений, а также других вопросов, вплоть до проблемы разрешимости. Аппарат диаграмм Венна находит применение в приложениях математической логики и теории автоматов, в частности при решении задач, связанных с нейронными цепями и проблемой синтеза надежных схем из относительно мало надежных элементов.

А. С. Кузичев

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 645.

Литература:

Venn J. Symbolic logic. L., 1881. Ed. 2, rev. L., 1894;

Кузичев А. С. Диаграммы Венна. История и применения. М., 1968;

Он же. Решение некоторых задач математической логики с помощью диаграмм Венна. - В кн.: Исследование логических систем. М., 1970.

Если вы думаете, что ничего не знаете о кругах Эйлера, вы ошибаетесь. На самом деле вы наверняка не раз с ними сталкивались, просто не знали, как это называется. Где именно? Схемы в виде кругов Эйлера легли в основу многих популярных интернет-мемов (растиражированных в сети изображений на определенную тему).

Давайте вместе разберемся, что же это за круги, почему они так называются и почему ими так удобно пользоваться для решения многих задач.

Происхождение термина

– это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.

Пока не очень понятно, верно? Посмотрите на этот рисунок:

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Ну что, так стало понятнее? Именно поэтому круги Эйлера – это тот метод, который наглядно демонстрирует: лучше один раз увидеть, чем сто раз услышать. Его заслуга в том, что наглядность упрощает рассуждения и помогает быстрее и проще получить ответ.

Автор метода - ученый Леонард Эйлер (1707-1783). Он так и говорил о названных его именем схемах: «круги подходят для того, чтобы облегчить наши размышления». Эйлер считается немецким, швейцарским и даже российским математиком, механиком и физиком. Дело в том, что он много лет проработал в Петербургской академии наук и внес существенный вклад в развитие российской науки.

До него подобным принципом при построении своих умозаключений руководствовался немецкий математик и философ Готфрид Лейбниц.

Метод Эйлера получил заслуженное признание и популярность. И после него немало ученых использовали его в своей работе, а также видоизменяли на свой лад. Например, чешский математик Бернард Больцано использовал тот же метод, но с прямоугольными схемами.

Свою лепту внес также немецкий математике Эрнест Шредер. Но главные заслуги принадлежат англичанину Джону Венну. Он был специалистом в логике и издал книгу «Символическая логика», в которой подробно изложил свой вариант метода (использовал преимущественно изображения пересечений множеств).

Благодаря вкладу Венна метод даже называют диаграммами Венна или еще Эйлера-Венна.

Зачем нужны круги Эйлера?

Круги Эйлера имеют прикладное назначение, то есть с их помощью на практике решаются задачи на объединение или пересечение множеств в математике, логике, менеджменте и не только.

Если говорить о видах кругов Эйлера, то можно разделить их на те, что описывают объединение каких-то понятий (например, соотношение рода и вида) – мы их рассмотрели на примере в начале статьи.

А также на те, что описывают пересечение множеств по какому-то признаку. Таким принципом руководствовался Джон Венн в своих схемах. И именно он лежит в основе многих популярных в интернете мемов. Вот вам один из примеров таких кругов Эйлера:

Забавно, правда? И главное, все сразу становится понятно. Можно потратить много слов, объясняя свою точку зрения, а можно просто нарисовать простую схему, которая сразу расставит все по местам.

Кстати, если вы не можете определиться, какую профессию выбрать, попробуйте нарисовать схему в виде кругов Эйлера. Возможно, чертеж вроде этого поможет вам определиться с выбором:

Те варианты, которые окажутся на пересечении всех трех кругов, и есть профессия, которая не только сможет вас прокормить, но и будет вам нравиться.

Решение задач с помощью кругов Эйлера

Давайте рассмотрим несколько примеров задач, которые можно решить с помощью кругов Эйлера.

Вот на этом сайте - http://logika.vobrazovanie.ru/index.php?link=kr_e.html Елена Сергеевна Саженина предлагает интересные и несложные задачи, для решения которых потребуется метод Эйлера. Используя логику и математику, разберем одну из них.

Задача про любимые мультфильмы

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах. Оказалось, что большинству из них нравятся «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны» и «Волк и теленок». В классе 38 учеников. «Белоснежка и семь гномов» нравится 21 ученику. Причем трем среди них нравятся еще и «Волк и теленок», шестерым - «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма. У «Волка и теленка» 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким же шестиклассникам нравится «Губка Боб Квадратные Штаны».

Решение:

Так как по условиям задачи у нас даны три множества, чертим три круга. А так как по ответам ребят выходит, что множества пересекаются друг с другом, чертеж будет выглядеть так:

Мы помним, что по условиям задачи среди фанатов мультфильма «Волк и теленок» пятеро ребят выбрали два мультфильма сразу:

Выходит, что:

21 – 3 – 6 – 1 = 11 – ребят выбрали только «Белоснежку и семь гномов».

13 – 3 – 1 – 2 = 7 – ребят смотрят только «Волк и теленок».

Осталось только разобраться, сколько шестиклассников двум другим вариантам предпочитает мультфильм «Губка Боб Квадратные Штаны». От всего количества учеников отнимаем всех тех, кто любит два других мультфильма или выбрал несколько вариантов:

38 – (11 + 3 + 1 + 6 + 2 + 7) = 8 – человек смотрят только «Губка Боб Квадратные Штаны».

Теперь смело можем сложить все полученные цифры и выяснить, что:

мультфильм «Губка Боб Квадратные Штаны» выбрали 8 + 2 + 1 + 6 = 17 человек. Это и есть ответ на поставленный в задаче вопрос.

А еще давайте рассмотрим задачу , которая в 2011 году была вынесена на демонстрационный тест ЕГЭ по информатике и ИКТ (источник - http://eileracrugi.narod.ru/index/0-6).

Условия задачи:

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» - символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети интернет.

Запрос Найдено страниц (в тысячах)
Крейсер | Линкор 7000
Крейсер 4800
Линкор 4500

Какое количество страниц (в тысячах) будет найдено по запросу Крейсер & Линкор ?

Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение:

При помощи кругов Эйлера изобразим условия задачи. При этом цифры 1, 2 и 3 используем, чтобы обозначить полученные в итоге области.

Опираясь на условия задачи, составим уравнения:

  1. Крейсер | Линкор: 1 + 2 + 3 = 7000
  2. Крейсер: 1 + 2 = 4800
  3. Линкор: 2 + 3 = 4500

Чтобы найти Крейсер & Линкор (обозначенный на чертеже как область 2), подставим уравнение (2) в уравнение (1) и выясним, что:

4800 + 3 = 7000, откуда получаем 3 = 2200.

Теперь этот результат мы можем подставить в уравнение (3) и выяснить, что:

2 + 2200 = 4500, откуда 2 = 2300.

Ответ: 2300 - количество страниц, найденных по запросу Крейсер & Линкор.

Как видите, круги Эйлера помогают быстро и просто решить даже достаточно сложные или просто запутанные на первый взгляд задачи.

Заключение

Полагаю, нам удалось убедить вас, что круги Эйлера – не просто занимательная и интересная штука, но и весьма полезный метод решения задач. Причем не только абстрактных задач на школьный уроках, но и вполне себе житейских проблем. Выбора будущей профессии, например.

Вам еще наверняка будет любопытно узнать, что в современной массовой культуре круги Эйлера нашли отражение не только в виде мемов, но и в популярных сериалах. Таких, как «Теория большого взрыва» и «4исла».

Используйте это полезный и наглядный метод для решения задач. И обязательно расскажите о нем друзьям и одноклассникам. Для этого под статьей есть специальные кнопки.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Читайте также: