Вычисление частных производных и дифференциалов. Частные производные функции двух переменных.Понятие и примеры решений. Задание для самостоятельной работы студента

Линеаризация функции. Касательная плоскость и нормаль к поверхности.

Производные и дифференциалы высших порядков.

1. Частные производные ФНП *)

Рассмотрим функцию и = f (P), РÎDÌR n или, что то же самое,

и = f (х 1 , х 2 , ..., х п ).

Зафиксируем значения переменных х 2 , ..., х п , а переменной х 1 дадим приращение Dх 1 . Тогда функция и получит приращение , определяемое равенством

= f (х 1 +Dх 1 , х 2 , ..., х п ) – f (х 1 , х 2 , ..., х п ).

Это приращение называют частным приращением функции и по переменной х 1 .

Определение 7.1. Частной производной функции и = f (х 1 , х 2 , ..., х п ) по переменной х 1 называется предел отношения частного приращения функции к приращению аргумента Dх 1 при Dх 1 ® 0 (если этот предел существует).

Обозначается частная производная по х 1 символами

Таким образом, по определению

Аналогично определяются частные производные по остальным переменным х 2 , ..., х п . Из определения видно, что частная производная функции по переменной х i – это обычная производная функции одной переменной х i , когда остальные переменные считаются константами. Поэтому все ранее изученные правила и формулы дифференцирования могут быть использованы для отыскания производной функции нескольких переменных.

Например, для функции u = x 3 + 3xy z 2 имеем

Таким образом, если функция нескольких переменных задана явно, то вопросы существования и отыскания ее частных производных сводятся к соответствующим вопросам относительно функции одной переменной – той, по которой необходимо определить производную.

Рассмотрим неявно заданную функцию. Пусть уравнение F(x , y ) = 0 определяет неявную функцию одной переменной х . Справедлива

Теорема 7.1.

Пусть F(x 0 , y 0) = 0 и функции F(x , y ), F¢ х (x , y ), F¢ у (x , y ) непрерывны в некоторой окрестности точки (х 0 , у 0), причем F¢ у (x 0 , y 0) ¹ 0. Тогда функция у , заданная неявно уравнением F(x , y ) = 0, имеет в точке (x 0 , y 0) производную, которая равна

.

Если условия теоремы выполняются в любой точке области DÌ R 2 , то в каждой точке этой области .

Например, для функции х 3 –2у 4 + ух + 1 = 0 находим

Пусть теперь уравнение F(x , y , z ) = 0 определяет неявную функцию двух переменных. Найдем и . Так как вычисление производной по х производится при фиксированном (постоянном) у , то в этих условиях равенство F(x , y =const, z ) = 0 определяет z как функцию одной переменной х и согласно теореме 7.1 получим

.

Аналогично .

Таким образом, для функции двух переменных, заданной неявно уравнением , частные производные находят по формулам: ,

Частные производные функции двух переменных.
Понятие и примеры решений

На данном уроке мы продолжим знакомство с функцией двух переменных и рассмотрим, пожалуй, самое распространенное тематическое задание – нахождение частных производных первого и второго порядка, а также полного дифференциала функции . Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене.

Для эффективного изучения нижеизложенного материала вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на странице Математические формулы и таблицы .

Быстренько повторим понятие функции двух переменных , я постараюсь ограничиться самым минимумом. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: – функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

С геометрической точки зрения функция двух переменных чаще всего представляет собой поверхность трехмерного пространства (плоскость, цилиндр, шар, параболоид, гиперболоид и т. д.). Но, собственно, это уже больше аналитическая геометрия, а у нас на повестке дня математический анализ, который никогда не давал списывать мой вузовский преподаватель является моим «коньком».

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной .

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций . Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас:

…да, кстати, для этой темы я таки создал маленькую pdf-книжку , которая позволит «набить руку» буквально за пару часов. Но, пользуясь сайтом, вы, безусловно, тоже получите результат – только может чуть медленнее:

Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения :
или – частная производная по «икс»
или – частная производная по «игрек»

Начнем с . Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом) .

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования , . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(3) Используем табличные производные и .

(4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.

Теперь . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом) .

(1) Используем те же правила дифференцирования , . В первом слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести нельзя поскольку – уже константа.

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для (да и вообще почти для любой буквы) . В частности, используемые нами формулы выглядят так: и .

В чём смысл частных производных?

По своей сути частные производные 1-го порядка напоминают «обычную» производную :

– это функции , которые характеризуют скорость изменения функции в направлении осей и соответственно. Так, например, функция характеризует крутизну «подъёмов» и «склонов» поверхности в направлении оси абсцисс, а функция сообщает нам о «рельефе» этой же поверхности в направлении оси ординат.

! Примечание : здесь подразумеваются направления, которые параллельны координатным осям .

В целях лучшего понимания рассмотрим конкретную точку плоскости и вычислим в ней значение функции («высоту»):
– а теперь представьте, что вы здесь находитесь (НА САМОЙ поверхности).

Вычислим частную производную по «икс» в данной точке:

Отрицательный знак «иксовой» производной сообщает нам об убывании функции в точке по направлению оси абсцисс. Иными словами, если мы сделаем маленький-маленький (бесконечно малый) шажок в сторону острия оси (параллельно данной оси) , то спустимся вниз по склону поверхности.

Теперь узнаем характер «местности» по направлению оси ординат:

Производная по «игрек» положительна, следовательно, в точке по направлению оси функция возрастает . Если совсем просто, то здесь нас поджидает подъём в гору.

Кроме того, частная производная в точке характеризует скорость изменения функции по соответствующему направлению. Чем полученное значение больше по модулю – тем поверхность круче, и наоборот, чем оно ближе к нулю – тем поверхность более пологая. Так, в нашем примере «склон» по направлению оси абсцисс более крут, чем «гора» в направлении оси ординат.

Но то были два частных пути. Совершенно понятно, что из точки, в которой мы находимся, (и вообще из любой точки данной поверхности) мы можем сдвинуться и в каком-нибудь другом направлении. Таким образом, возникает интерес составить общую «навигационную карту», которая сообщала бы нам о «ландшафте» поверхности по возможности в каждой точке области определения данной функции по всем доступным путям. Об этом и других интересных вещах я расскажу на одном из следующих уроков, ну а пока что вернёмся к технической стороне вопроса.

Систематизируем элементарные прикладные правила:

1) Когда мы дифференцируем по , то переменная считается константой.

2) Когда же дифференцирование осуществляется по , то константой считается .

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения :
или – вторая производная по «икс»
или – вторая производная по «игрек»
или – смешанная производная «икс по игрек»
или – смешанная производная «игрек по икс»

Со второй производной нет никаких проблем. Говоря простым языком, вторая производная – это производная от первой производной .

Для удобства я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

В практических примерах можно ориентироваться на следующее равенство :

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».
Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание , так как никаких чудесных равенств для их проверки не существует.

Вторые производные также находят широкое практическое применение, в частности, они используются в задаче отыскания экстремумов функции двух переменных . Но всему своё время:

Пример 2

Вычислить частные производные первого порядка функции в точке . Найти производные второго порядка.

Это пример для самостоятельного решения (ответы в конце урока). Если возникли трудности с дифференцированием корней, вернитесь к уроку Как найти производную? А вообще, довольно скоро вы научитесь находить подобные производные «с лёту».

Набиваем руку на более сложных примерах:

Пример 3

Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

Значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

В данном случае:

То есть, в формулу нужно тупо просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

И по неоднократным просьбам читателей, полный дифференциал второго порядка .

Он выглядит так:

ВНИМАТЕЛЬНО найдём «однобуквенные» производные 2-го порядка:

и запишем «монстра», аккуратно «прикрепив» квадраты , произведение и не забыв удвоить смешанную производную:

Ничего страшного, если что-то показалось трудным, к производным всегда можно вернуться позже, после того, как поднимите технику дифференцирования:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Рассмотрим серию примеров со сложными функциями:

Пример 5

Найти частные производные первого порядка функции .

Решение:

Пример 6

Найти частные производные первого порядка функции .
Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки». Знаете, всегда приятно, когда дробь удается превратить в ноль). Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в этом смысле ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь произведение двух функций, КАЖДАЯ из которых зависит от «икс» , а поэтому, нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит, считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.

Для тех читателей, которые мужественно добрались почти до конца урока, расскажу старый мехматовский анекдот для разрядки:

Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:

– А почему это ты от меня никуда не убегаешь?

– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!

На что злобная производная с коварной улыбкой отвечает:

– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.

Кто понял анекдот, тот освоил производные, минимум, на «тройку»).

Пример 8

Найти частные производные первого порядка функции .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Ну вот почти и всё. Напоследок не могу не обрадовать любителей математики еще одним примером. Дело даже не в любителях, у всех разный уровень математической подготовки – встречаются люди (и не так уж редко), которые любят потягаться с заданиями посложнее. Хотя, последний на данном уроке пример не столько сложный, сколько громоздкий с точки зрения вычислений.

Практическая работа №2

«Дифференциал функции»

Цель занятия : Научиться решать примеры и задачи по данной теме.

Вопросы теории (исходный уровень):

1. Применение производных для исследования функций на экстремум.

2. Дифференциал функции, его геометрический и физический смысл.

3. Полный дифференциал функции многих переменных.

4. Состояние организма как функция многих переменных.

5. Приближенные вычисления.

6. Нахождение частных производных и полного дифференциала.

7. Примеры использования указанных понятий в фармакокинетике, микробиологии и др.

(самостоятельная подготовка)

1. ответить на вопросы по теме занятия;

2. решить примеры.

Примеры

Найти дифференциалы следующих функций:

1) 2) 3)
4) 5) 6)
7) 8) 9)
10) 11) 12)
13) 14) 15)
16) 17) 18)
19) 20)

Применение производных для исследования функций

Условие возрастания функции y = f(x)на отрезке [а, b]

Условие убывания функции y=f(x)на отрезке [а, b]

Условие максимума функции y=f(x)при x= а

f"(a)=0 и f"" (a)<0

Если при х=а производные f"(а) = 0 и f"(а) = 0, то необходи­мо исследовать f"(x)в окрестностях точки x = а. Функция у=f(х)при х=а имеет максимум, если при переходе через точку х= а производная f"(x)меняет знак с «+» на «-», в случае минимума - с « - » на «+» Если f"(x)не меняет знака при переходе через точку х = а,то в этой точке у функ­ции экстремума нет

Дифференциал функции.

Дифференциал независимой переменной равен ее приращению:

Дифференциал функции y=f(x)

Дифференциал суммы (разности) двух функций y=u±v

Дифференциал произведения двух функций у=uv

Дифференциал частного двух функций y=u/v

dy=(vdu-udv)/v 2

Приращение функции

Δy = f(x + Δx) - f(x) ≈ dy ≈ f"(x) Δx

где Δx: - приращение аргумента.

Приближенное вычисление значения функции:

f(x + Δx) ≈ f(x) + f"(x) Δx

Применениедифференциала в приближенных вычислениях

Дифференциал применяется для вычисления абсолютной и отно­сительной погрешностей при косвенных измерениях u = f(x, у, z .). Абсолютная погрешность результата измерения

du≈Δu≈|du/dx|Δx+|du/dy|Δy+|du/dz|Δz+…

Относительная погрешность результата измерения

du/u≈Δu/u≈(|du/dx|Δx+|du/dy|Δy+|du/dz|Δz+…)/u

ДИФФЕРЕНЦИАЛ ФУНКЦИИ.

Дифференциал функции как главная часть приращения функци и. С понятием производной тесно связано понятие дифференциала функции. Пусть функция f(x) непрерывна при данных значениях х и имеет производную

Df/Dx = f¢(x) + a(Dx) , откуда приращение функции Df = f¢(x)Dx + a(Dx)Dx, где a(Dх) ® 0 при Dх ® 0 . Определим порядок бесконечно малой f¢(x)Dx Dх. :

Следовательно, бесконечно малые f¢(x)Dx и Dx имеют одинаковый порядок малости, то есть f¢(x)Dx = O.

Определим порядок бесконечно малой a(Dх)Dх по отношению к бесконечно малой :

Следовательно, бесконечно малая a(Dх)Dх имеет более высокий порядок малости по сравнению с бесконечно малой , то есть a(Dх)Dх = о.

Таким образом, бесконечно малое приращение Df дифференцируемой функции может быть представлено в виде двух слагаемых: бесконечно малой f¢(x)Dx одинакового порядка малости с и бесконечно малой a(Dх)Dх более высокого порядка малости по сравнению с бесконечно малой Dх. Это означает, что в равенстве Df=f¢(x)Dx + a(Dx)Dx при Dх® 0 второе слагаемое стремится к нулю «быстрее», чем первое, то есть a(Dх)Dх = о.

Первое слагаемое f¢(x)Dx, линейное относительно , называют дифференциалом функции f(x) в точке х и обозначают dy или df (читается «дэ игрек» или «дэ эф»). Итак,

dy = df = f¢(x)Dx.

Аналитический смысл дифференциала заключается в том, что дифференциал функции есть главная часть приращения функции Df , линейная относительно приращения аргумента Dx . Дифференциал функции отличается от приращения функции на бесконечно малую более высокого порядка малости, чем Dx . Действительно, Df=f¢(x)Dx + a(Dx)Dx или Df = df + a(Dx)Dx. Дифференциал аргумента dx равен его приращению Dx: dx=Dx.

Пример. Вычислить значение дифференциала функции f(x) = x 3 + 2x, когда х изменяется от 1 до 1,1.

Решение. Найдем общее выражение для дифференциала этой функции:

Подставляя значения dx=Dx=1,1–1= 0,1 и x = 1 в последнюю формулу, получим искомое значение дифференциала: df ½ x=1; = 0,5.

ЧАСТНЫЕ ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ.

Частные производные первого порядка . Частной производной первого порядкафункции z = f(x,y) по аргументу х в рассматриваемой точке (х; у) называется предел

если он существует.

Частная производная функции z = f(x, y) по аргументу х обозначается одним из следующих символов:

Аналогично частная производная по у обозначается и определяется формулой:

Так как частная производная – это обычная производная функции одного аргумента, то ее нетрудно вычислить. Для этого нужно пользоваться всеми рассмотренными до сих пор правилами дифференцирования, учитывая в каждом случае, какой из аргументов принимается за «постоянное число», а какой служит «переменной дифференцирования».

Замечание. Для нахождения частной производной, например по аргументу х – df/dx , достаточно найти обыкновенную производную функции f(x,y), считая последнюю функцией одного аргумента х , а у – постоянной; для нахождения df/dy – наоборот.

Пример. Найти значения частных производных от функции f(x,y) = 2x 2 + y 2 в точке Р(1;2).

Решение. Считая f(x,y) функцией одного аргумента х и пользуясь правилами дифференцирования, находим

В точке Р(1;2) значение производной

Считая f(x;y) функцией одного аргумента у, находим

В точке Р(1;2) значение производной

ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА:

Найдите дифференциалы следующих функций:

Решить следующие задачи:

1. На сколько уменьшится площадь квадрата со стороной х=10см, если сторону уменьшить на 0,01 см?

2. Дано уравнение движения тела: y=t 3 /2+2t 2 , где s – выражено в метрах, t-в секундах. Найти путь s, пройденный телом за t=1,92 с от начала движения.

ЛИТЕРАТУРА

1. Лобоцкая Н.Л. Основы высшей математики - М.: «Вышэйшая школа», 1978.C198-226.

2. Бейли Н. Математика в биологии и медицине. Пер. с англ. М.: «Мир», 1970.

3. Ремизов А.Н., Исакова Н.Х., Максина Л.Г. Сборник задач по медицинской и биологической физике – М.: «Высшая школа», 1987. С16-20.

Транскрипт

1 ЛЕКЦИЯ N Полный дифференциал, частные производные и дифференциалы высших порядков Полный дифференциал Частные дифференциалы Частные производные высших порядков Дифференциалы высших порядков 4Производные от сложных функций 4 Полный дифференциал Частные дифференциалы Если функция z=f(,) дифференцируема, то ее полный дифференциал dz равен dz=a +B () z z Замечая, что A=, B =, запишем формулу () в следующем виде z z dz= + () Распространим понятие дифференциала функции на независимые переменные, положив дифференциалы независимых переменных равными их приращениям: d= ; d= После этого формула полного дифференциала функции примет вид z z dz= d + d () d + d Пример Пусть =ln(+) Тогда dz= d + d = Аналогично, если u=f(, n) есть дифференцируемая функция n независимых n переменных, то du= d (d =) = Выражение d z=f (,)d (4) называется частным дифференциалом функции z=f(,) по переменной; выражение d z=f (,)d (5) называется частным дифференциалом функции z=f(,) по переменной Из формул (), (4) и (5) следует, что полный дифференциал функции является суммой ее частных дифференциалов: dz=d z+d z Отметим, что полное приращение z функции z=f(,), вообще говоря, не равно сумме частных приращений Если в точке (,) функция z=f(,) дифференцируема и дифференциал dz 0 в этой точке, то ее полное приращение z= z z + + α (,) + β (,) отличается от своей линейной части dz= z z + только на сумму последних слагаемых α +β, которые при 0 и 0 являются бесконечно малыми более высокого порядка, чем слагаемые линейной части Поэтому при dz 0 линейную часть приращения дифференцируемой функции называют главной частью приращения функции и пользуются приближенной формулой z dz, которая будет тем более точной, чем меньшими по абсолютной величине будут приращения аргументов,97 Пример Вычислить приближенно arctg(),0

2 Решение Рассмотрим функцию f(,)=arctg() Применяя формулу f(х 0 + х,у 0 + у) f(х 0, у 0) + dz, получим arctg(+) arctg() + [ arctg()] + [ arctg()] или + + arctg() arctg() () + () Положим =, =, тогда =-0,0, =0,0 Поэтому, (0,0 0,0 arctg) arctg() + (0,0) 0,0 = arctg 0,0 = + 0,0 + () + () π = 0,05 0,0 0,75 4 Можно показать, что ошибка, получающаяся при применении приближенной формулы z dz не превосходит числа = М (+), где М наибольшее значение абсолютных величин вторых частных производных f (,), f (,), f (,) при изменении аргументов от до + и от до + Частные производные высших порядков Если функция u=f(, z) имеет в некоторой (открытой) области D частную производную по одной из переменных, то найденная производная, сама являясь функцией от, z, может в свою очередь в некоторой точке (0, 0, z 0) иметь частные производные по той же или по любой другой переменной Для исходной функции u=f(, z) эти производные будут частными производными второго порядка Если первая производная была взята, например, по, то ее производная по, z обозначается так: f (0, 0, z0) f (0, 0, z0) f (0, 0, z0) = ; = ; = или u, u, u z z z Аналогично определяют производные третьего, четвертого и так далее порядков Заметим, что частная производная высшего порядка, взятая по различным переменным, например, ; называется смешанной частной производной Пример u= 4 z, тогда, u =4 z ; u = 4 z ; u z = 4 z; u = z ; u =6 4 z ; u zz = 4 ; u = z ; u = z ; u z = 4 z; u z =8 z; u z =6 4 z; u z =6 4 z Заметим, что смешанные производные, взятые по одним и тем же переменным, но в разном порядке, совпадают Это свойство верно не для всех, вообще говоря, функций, но оно имеет место в широком классе функций Теорема Предположим, что) функция f(,) определена в (открытой) области D,) в этой области существуют первые производные f и f, а также вторые смешанные производные f и f и наконец,) эти последние производные f и f, как функции и, непрерывны в некоторой точке (0, 0) области D Тогда в этой точке f (0, 0)=f (0, 0) Доказательство Рассмотрим выражение

3 f (0 +, 0 f (0 +, 0) f (0, 0 + f (0, 0) W=, где, отличны от нуля, например, положительны, и притом настолько малы, что в D содержится весь прямоугольник [ 0, 0 +; 0, 0 +] Введем вспомогательную функцию от: f (, 0 f (, 0) ϕ()=, которая в промежутке [ 0, 0 +] в силу () имеет производную: f f ϕ (, 0 +) (, 0) ()= и, следовательно, непрерывна С помощью этой функции f (0 +, 0 f (0 +, 0) f (0, 0 f (0, 0) выражение W, которое равно W= можно переписать в виде: ϕ (0 +) ϕ (0) W= Так как для функции ϕ() в промежутке [ 0, 0 +] выполняются все условия теоремы Лагранжа, то мы можем, по формуле конечных приращений, преобразовать выражение W f так: W=ϕ (0 + θ, 0 f (0 + θ, 0) (0 +θ)= (0<θ<) Пользуясь существованием второй производной f (,), снова применим формулу конечных приращений, на этот раз к функции от: f (0 +θ,) в промежутке [ 0, 0 +] Получим W=f (0 +θ, 0 +θ), (0<θ <) Но выражение W содержит и, с одной стороны, и и, с другой, одинаковым образом Поэтому, можно поменять их роли и, введя вспомогательную функцию: Ψ()= f (0 +,) f (0,), путем аналогичных рассуждений получить результат: W=f (0 +θ, 0 +θ) (0<θ, θ <) Из сопоставления () и (), находим f (0 +θ, 0 +θ)=f (0 +θ, 0 +θ) Устремив теперь и к нулю, перейдем в этом равенстве к пределу В силу ограниченности множителей θ, θ, θ, θ, аргументы и справа, и слева стремятся к 0, 0 А тогда, в силу (), получим: f (0, 0)=f (0, 0), что и требовалось доказать Таким образом, непрерывные смешанные производные f и f всегда равны Общая теорема о смешанных производных Пусть функция u=f(, n) от переменных определена в открытой n-мерной области D и имеет в этой области всевозможные частные производные до (n-)-го порядка включительно и смешанные производные n-го порядка, причем все эти производные непрерывны в D При этих условиях значение любой n-ой смешанной производной не зависит от того порядка, в котором производятся последовательные дифференцирования Дифференциалы высших порядков Пусть в области D задана непрерывная функция u=f(, х), имеющая непрерывные частные производные первого порядка Тогда, du= d + d + + d

4 Мы видим, что du также является некоторой функцией от, Если предположить существование непрерывных частных производных второго порядка для u, то du будет иметь непрерывные частные производные первого порядка и можно говорить о полном дифференциале от этого дифференциала du, d(du), который называется дифференциалом второго порядка (или вторым дифференциалом) от u; он обозначается d u Подчеркнем, что приращения d, d, d при этом рассматриваются как постоянные и остаются одними и теми же при переходе от одного дифференциала к следующему (причем d, d будут нулями) Итак, d u=d(du)=d(d + d + + d) = d() d + d() d + + d() d или d u = (d + d + d + + d) d + + (d + d + = d + d + + d + dd + dd + + dd + + Аналогично, определяется дифференциал третьего порядка d u и так далее Если для функции u существуют непрерывные частные производные всех порядков до n-го включительно, то существование n-го дифференциала обеспечено Но выражения для них становятся все более сложными Можно упростить запись Вынесем в выражении первого дифференциала «букву u» за скобки Тогда, запись будет символической: du=(d + d + + d) u ; d u=(d + d + + d) u ; d n n u=(d + d + + d) u, которую надлежит понимать так: сначала «многочлен», стоящий в скобках, формально, возводится по правилам алгебры в степень, затем все полученные члены «умножаются» на u (которое n дописывается в числителях при), и только после этого всем символам возвращается их значение как производных и дифференциалов u d) d u 4Производные от сложных функций Пусть мы имеем функцию u=f(, z), определенную в области D, причем каждая из переменных, z в свою очередь, является функцией от переменной t в некотором промежутке: =ϕ(t), =ψ(t), z=λ(t) Пусть, кроме того, при изменении t точки (, z) не выходят за пределы области D Подставив значения, и z в функцию u, получим сложную функцию: u=f(ϕ(t), ψ(t), λ(t)) Предположим, что u имеет по, и z непрерывные частные производные u, u и u z и что t, t и z t существуют Тогда можно доказать существование производной сложной функции и вычислить ее Придадим переменной t некоторое приращение t, тогда, и z получат соответственно приращения, и z, функция же u получит приращение u Представим приращение функции u в форме: (это можно сделать, так как мы предположили существование непрерывных частных производных u, u и u z) u=u +u +u z z+α +β +χ z, где α, β, χ 0 при, z 0 Разделим обе части равенства на t, получим u z z = u + u + uz + α + β + χ t t t t t t t 4

5 Устремим теперь приращение t к нулю: тогда, z будут стремиться к нулю, так как функции, z от t непрерывны (мы предположили существование производных t, t, z t), а потому, α, β, χ тоже стремятся к нулю В пределе получаем u t =u t +u t +u z z t () Видим, что при сделанных предположениях производная сложной функции действительно существует Если воспользоваться дифференциальным обозначением, то du d d dz () будет иметь вид: = + + () dt dt dt z dt Рассмотрим теперь случай зависимости, z от нескольких переменных t: =ϕ(t, v), =ψ(t, v), z=χ(t, v) Кроме существования и непрерывности частных производных функции f(, z), мы предполагаем здесь существование производных от функций, z по t и v Этот случай существенно не отличается от уже рассмотренного, так как при вычислении частной производной функции от двух переменных мы одну из переменных фиксируем, и у нас остается функция только от одной переменной, формула ()будет та z же, а () нужно переписать в виде: = + + (а) t t t z t z = + + (б) v v v z v Пример u= ; =ϕ(t)=t ; =ψ(t)=cos t u t = - t + ln t = - t- ln sint 5


Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Приложение Определение производной Пусть и значения аргумента, а f) и f) - ((соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

1. Основные понятия. Функции нескольких переменных. Исследование функции нескольких переменных проведем на примерах функций двух и трех переменных, так как все данные определения и полученные результаты

2.2.7. Применение дифференциала к приближенным вычислениям. Дифференциал функции y = зависит от х и является главной частью приращения х. Также можно воспользоваться формулой: dy d Тогда абсолютная погрешность:

Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

6. Дифференциал функции 1. Определение и геометрический смысл ОПРЕДЕЛЕНИЕ. Функция y = f(x) называется дифференцируемой в точке x 0, если ее приращение в этой точке может быть записано как сумма линейной

Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ 3 Функция двух переменных, область определения, способы задания и геометрический смысл. Определение: z f, называется функцией двух переменных, если каждой паре значений,

Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ()

Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f (x, x) определена в области D, и точка x (x, x) = принадлежит данной области Функция u = f (x, x) имеет

Модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

9 Производная и дифференциал 91 Основные формулы и определения для решения задач Определение Пусть функция y f () определена на некоторой f (Δ) f () Δy окрестности точки Предел отношения при Δ Δ Δ, если

1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Функции нескольких аргументов Понятие функции каждому элементу х из множества Х по некоторому закону у = f(х) поставлено в соответствие единственное значение переменной у из множества У каждой паре чисел

Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f (1, n) переменной от переменных 1, n называется функцией n аргументов 1, n В дальнейшем будем рассматривать

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

СА Лавренченко wwwlawrencenkoru Лекция 4 Дифференцирование сложных функций Неявное дифференцирование Вспомним правило дифференцирования для функций одной переменной также называемое цепным правилом (см

Раздел Дифференциальное исчисление функции одной и нескольких переменных Функция действительного аргумента Действительные числа Целые положительные числа называются натуральными Добавим к натуральным

Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(,) f () () (), где () при

Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: 11 Функциональная связь Предел функции 1 Производная функции 1 Механический физический и геометрический смысл производной 14 Основные

М И Н И С Т Е Р С Т В О О Б Р А З О В А Н И Я И Н А У К И Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский

ДИСЦИПЛИНА «ВЫСШАЯ МАТЕМАТИКА» курс, семестр Заочная форма обучения ТЕМА Матричная алгебра При решении экономических задач применяются методы экономико-математического моделирования, использующие решение

В.В. Жук, А.М. Камачкин Дифференцируемость функций многих переменных. Дифференцируемость функции в точке. Достаточные условия дифференцируемости в терминах частных производных. Дифференцирование сложной

Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

ЛЕКЦИЯ 23 КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ. ТЕОРЕМА ЛИУВИЛЛЯ О СОХРАНЕНИИ ФАЗОВОГО ОБЪЁМА. ПРОИЗВОДЯЩАЯ ФУНКЦИЯ СВОБОДНОГО ПРЕОБРАЗОВАНИЯ Продолжим изучать канонические преобразования. Сначала напомним основные

Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 Дифференциальное исчисление функций одной

55 является при бесконечно малой величиной более высокого порядка малости по сравнению с ρ n (,), где ρ () + (), те можно представить его в форме Пеано n R, ρ Пример Записать формулу Тейлора при n с

Тема Определенный интеграл Определенный интеграл Задачи, приводящие к понятию определенного интеграла Задача о вычислении площади криволинейной трапеции В системе координат Оху дана криволинейная трапеция,

5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида (a + a) + a () + K + a () + K a) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =, х =,

Дифференциальные уравнения лекция 4 Уравнения в полных дифференциалах. Интегрирующий множитель Лектор Шерстнёва Анна Игоревна 9. Уравнения в полных дифференциалах Уравнение d + d = 14 называется уравнением

Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Математический анализ Раздел: Функция нескольких переменных Тема: Дифференцируемость ФНП (окончание. Частные производные и дифференциалы сложных ФНП. Дифференцирование неявных функций Лектор Рожкова С.В.

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - теорема Коши - формула конечных приращений - правило Лопиталя

Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

ЛЕКЦИЯ 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 1 Понятие производной функции Рассмотрим функцию у=f(), определенную на интервале (а;в) Возьмем любое значение х (а;в) и зададим аргументу

Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной. Основные

Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

58 Определенный интеграл Пусть на промежутке задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке произвольные числа, 3, n-, удовлетворяющие условию:

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Дифференцирование неявно заданной функции Рассмотрим функцию (,) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

ЛАБОРАТОРНАЯ РАБОТА 7 ОБОБЩЕННЫЕ ФУНКЦИИ I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Обозначим через D множество всех бесконечно дифференцируемых финитных функций действительного переменного. Это

Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Методические указания и варианты РГР по теме Функция нескольких переменных для студентов специальности Дизайн. Если величина однозначно определяется заданием значений величин и, независимых друг от друга,

ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Предел функции. Предел числовой последовательности Определение. Бесконечной числовой последовательностью (или просто числовой последовательностью называется функция f f (, определенная на множестве всех

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

Дифференциальное исчисление функций нескольких переменных Функции нескольких переменных Величина называется функцией переменных величин n если каждой точке М n принадлежащей некоторому множеству X поставлено

ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f () d =, () = Функция f (,) задана в области G плоскости (,

Федеральное агентство по образованию Московский Государственный университет геодезии и картографии (МИИГАиК) МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по курсу ВЫСШАЯ МАТЕМАТИКА Числовые

Для упрощения записи и изложения материала ограничимся случаем функций двух переменных. Все дальнейшее справедливо также для функций любого числа переменных.

Определение. Частной производной функции z = f (х, у ) по независимой переменной х называется производная

вычисленная при постоянном у .

Аналогично определяется частная производная по переменной у .

Для частных производных справедливы обычные правила и формулы дифференцирования.

Определение. Произведение частной производной на приращение аргумента х ( y) называется частным дифференциалом по переменной х (у ) функции двух переменных z = f (x, y ) (обозначения: ):

Если под дифференциалом независимой переменной dx (dy ) понимать приращение х (у ), то

Для функции z = f (x, y ) выясним геометрический смысл ее частотных производных и .

Рассмотрим точку , точку P 0 (х 0 , y 0 , z 0) на поверхности z = f (x , у ) и кривую L , которая получится при сечении поверхности плоскостью у = у 0 . Эту кривую можно рассматривать как график функции одной переменной z = f (x, y ) в плоскости у = у 0 . Если провести в точке Р 0 (х 0 , у 0 , z 0) касательную к кривой L , то, согласно геометрическому смыслу производной функции одной переменной , где a угол, образованный касательной с положительным направлением оси Ох .


Или: аналогично зафиксируем другую переменную, т.е. проведем сечение поверхности z = f (x, y ) плоскостью х = х 0 . Тогда функцию

z = f (x 0 , y ) можно рассмотреть как функцию одной переменной у :

где b – угол, образованный касательной в точке М 0 (х 0 , у 0) с положительным направлением оси Oy (рис. 1.2).

Рис. 1.2. Иллюстрация геометрического смысла частных производных

Пример 1.6. Дана функция z = х 2 3ху – 4у 2 – х + 2у + 1. Найти и .

Решение. Рассматривая у как постоянную величину, получим

Считая х постоянной, находим

Читайте также: