Определение скорости любой точки плоской фигуры. Определение скоростей точек тела плоской фигуры Определение скоростей точек плоской фигуры

Напомним, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения вместе с полюсом и вращательного движения вокруг полюса.

В соответствии с этим скорость произвольной точки М плоской фигуры геометрически складывается из скорости какой-нибудь точки А, принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса, т. е.

При этом скорость V MA определяется как скорость точки М при вращении тела вокруг неподвижной оси, проходящей через точку А перпендикулярно плоскости движения (см. § 7.2), т. е.

Таким образом, если известны скорость полюса V А и угловая скорость тела со, то

скорость любой точки М тела определяется в соответствии с равенством (8.2), диагональю параллелсгграмма, построенного на векторах V A и V MA , как на сторонах (рис. 8.3), а модуль скорости V M вычисляется по формуле

где у - угол между векторами V A и V MA

Задача 8.1. Колесо катится по неподвижной поверхности без скольжения (рис. 8.4, а). Найти скорость точек К и D колеса, если известны скорость V c центра С колеса, радиус R колеса, расстояние КС = b и угол а.

Решение. 1. Рассматриваемое движение колеса является плоскопараллельным. Приняв точку С за полюс (так как ее скорость известна), в соответствии с общим равенством (8.2), для точки К можем записать

Однако нет возможности определить значение V KC , так как неизвестна угловая скорость со.

Для определения со рассмотрим скорость другой точки, а именно точки Р касания колеса о неподвижную поверхность (рис. 8.4, б). Для этой точки можно написать равенство

Особенностью точки Р является то обстоятельство, что в данный момент времени V p - 0, так как колесо катится без скольжения. Тогда равенство (б) принимает вид


откуда получим

Отсюда следует: 1) векторы скоростей V PC и V c должны быть направлены в противоположные стороны; 2) из равенства модулей V PC - V c получаем ыРС= V c , отсюда найдем со = V c /PC= V c /R. В соответствии с направлением вектора V PC определяем направление дуговой стрелки со и показываем ее на чертеже (рис. 8.4, б).

Теперь возвращаемся к определению V K по равенству (а). Находим

Vкс = о КС - V^b/R. Зная направление угловой скорости со, изображаем вектор V KC перпендикулярно отрезку КС и выполняем построение параллелограмма на векторах V c и V KC (рис. 8.4, в). Так как в данном случае V c и V KC взаимно перпендикулярны, окончательно находим

2. Скорость точки D на ободе колеса определим из равенства V D = V C + V DC . Так как численно V DC - соR - V c , то параллелограмм, построенный на векторах V c и V DC , будет ромбом. Угол между V c и V DC равен 2а. Определив V D как длину соответствующей диагонали ромба, получим

Теорема о проекциях скоростей двух точек твердого тела

Согласно равенству (8.2) для двух_ произвольных точек А и В твердого тела справедливо равенство V B =V A +V BA , в соответствии с которым выполним построение, показанное на рис. 8.5. Проецируя это равенство на ось Az, направленную по А В, получим Ум + V BAz . Учитывая, что вектор V BA перпендикулярен прямой

А В, находим

Этот результат и выражает теорему: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.


Отметим, что равенство (8.5) математически отражает то обстоятельство, что тело рассматривается как абсолютно твердое и расстояние между точками А и В не изменяется. Поэтому равенство (8.5) выполняется не только при плоскопараллельном, но и при любом движении твердого тела.

Задача 8.2. Ползуны А и В, соединенные стержнем с шарнирами на концах, перемешаются по взаимно перпендикулярным направляющим в плоскости чертежа (рис. 8.6, а). Определить при данном угле а скорость точки В, если известна скорость V A .

Решение. Проведем ось х через точки А и В. Зная направление V A ,

находим проекцию этого вектора на прямую АВ: V Ax - V A cos а (на рис. 8.6, б это будет отрезок Аа). Далее на чертеже от точки В откладываем ВЬ - Аа (так как отрезок Аа расположен на оси х вправо от точки А, то и отрезок ВЬ откладываем от точки В по оси х вправо). Восставляя в точке Ь перпендикуляр к прямой АВ, находим точку конца вектора V B .

Согласно теореме о проекциях V A cos а = K^cosp. Отсюда (учтя, что Р = 90° - а) окончательно получим V B = V A cos a/cos(90° - a) или V B = = V A ctg a.

Определение скоростей точек с помощью мгновенного центра скоростей

Для определения скоростей точек плоской фигуры выберем в качестве полюса какую-либо точку Р. Тогда, согласно формуле

(8.2), скорость произвольной точки М определяется как сумма двух векторов:

Если бы скорость полюса Р в данный момент времени была равна нулю, то правая часть этого равенства была бы представлена одним слагаемым У МР и скорость любой точки определялась бы как скорость точки М тела при вращении его вокруг неподвижного полюса Р.

Следовательно, если выбрать в качестве полюса точку Р, скорость которой в данный момент времени равна нулю, то модули скоростей всех точек фигуры будут пропорциональны их расстояниям до полюса Р, а направления векторов скоростей всех точек будут перпендикулярны прямым, соединяющим рассматриваемую точку и полюс Р. Естественно, что расчет по формулам (8.6) значительно проще расчета по общей формуле (8.2).

Точка плоской фигуры, скорость которой в данный момент времени равна нулю, называется мгновенным центром скоростей (МЦС). Легко убедиться, что если фигура движется непоступательно, то такая точка в каждый момент времени существует и при том единственная. Отметим, что мгновенный центр скоростей может быть расположен как на самой фигуре, так и на ее мысленном продолжении.

Рассмотрим способы определения положения мгновенного центра скоростей.

1. Пусть в момент времени t jum плоской фигуры известны ее угловая скорость со и скорость V A какой-нибудь ее точки А (рис. 8.7, а). Тогда, выбирая точку А в качестве полюса,_скорость_иско- мой нами точки Р можно определить по формуле V p = V A + Vp A -

Задача состоит в том^чтобы найти такую точку Р, у которой V P =0, значит, для нее V A +У РЛ =0 и отсюда У РА = -У А. Следовательно, для точки Р скорость У РА, которую точка Р получает при вращении фигуры вокруг полюса А, и скорость У А полюса А равны по модулю (У РА = У А) или озАР= У А и противоположны по направлению. Кроме того, точка Р должна лежать на перпендикуляре к вектору У А. Определение положения точки Р осуществляется таким построением: из точки А (рис. 8.7, б) восставим перпендикуляр к вектору У А и отложим на нем расстояние АР = У А /со в ту сторону от точки А, куда «покажет» вектор У А, если его повернуть на 90° в направлении дуговой стрелки со.

Мгновенный центр скоростей является единственной точкой плоской фигуры, скорость которой в данный момент времени равна нулю.

В другой момент времени мгновенным центром скоростей может быть уже другая точка плоской фигуры.

2. Пусть известны направления скоростей V A и У в (рис. 8.8, а) двух точек А и В плоской фигуры (причем векторы скоростей этих точек непараллельны), или известны элементарные перемещения этих точек. Мгновенный центр скоростей будет находиться в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек (или к элементарным перемещениям точек). Такое построение выполнено на рис. 8.8, б. Оно основано на том, что для любых точек А и В фигуры применимы положения (8.6):

Из этих равенств следует, что

Зная положение МЦС и угловую скорость тела, применив формулы (8.6), легко определить скорость любой точки этого тела. На- пример^для точки К (см. рис. 8.8, б) модуль скорость V K =coКР, вектор У к направлен перпендикулярно прямой КР в соответствии с

направлением дуговой стрелки ю.

Следовательно, скорости точек плоской фигуры определяются в данный момент времени так, как будто эта фигура вращается вокруг мгновенного центра скоростей.

3. Если скорости точек А и В плоской фигуры параллельны друг другу, то возможны три варианта, которые изображены на рис. 8.9. Для случаев, когда прямая АВ перпендикулярна векторам V А и V B (рис. 8.9, а, б), построения основываются на пропорции (8.7).


Если скорости точек Ли В параллельны, а прямая AB_nt перпендикулярна V А (рис. 8.9, в), то перпендикуляры к У А и V B параллельны и мгновенный центр скоростей находится в бесконечности (АР= оо); угловая скорость вращения фигуры со = VJAP = V A /cc = 0. В этом случае скорости всех точек фигуры в данный момент времени равны друг другу, т. е. фигура имеет распределение скоростей как при поступательном движении. Такое состояние движения тела называют мгновенно поступательным. Отметим, что в этом состоянии ускорения всех точек тела не будут одинаковыми.

4. Если плоское движение тела осуществляется путем его качения без скольжения по неподвижной поверхности (рис. 8.10), то точка касания Р будет являться мгновенным центром скоростей (см. задачу 8.1).

Задача 8.3. Плоский механизм состоит из стержней 7, 2, 3, 4 и ползуна В (рис. 8.11), соединенных друг с другом и с неподвижными опорами 0 { и 0 2 шарнирами; точка D находится в середине стержня АВ. Длины стержней: / 2 =0,4 м, / 2 = 1,2 м, / 3 = 0,7 м, / 4 = 0,3 м. Угловая скорость стержня 7 в заданном положении механизма со, = 2 с -1 и направлена против хода часовой стрелки. Определить V A , V B , V D , V E , oo 2 , co 3 , to 4 и скорость точки К в середине стержня DE (DK = КЕ).

Решение. В рассматриваемом механизме стержни 7, 4 совершают вращательное движение, ползун В - поступательное, а стержни 2, 3 -

плоскопараллельное движение.

Скорость точки А определим как принадлежащую стержню 7, совершающему вращательное движение:

Рассмотрим движение стержня 2. Скорость точки А определена, а направление скорости точки В обусловлено тем, что она принадлежит одновременно стержню 2 и пол-


зуну, движущемуся вдоль направляющих. Теперь, восставляя из точек А и В перпендикуляры к У А и направлению движения ползуна В, находим положение точки С 2 - МЦС стержня 2.

По направлению вектора У А, учитывая, что в рассматриваемом положении механизма стержень 2 вращается вокруг точки С 2 , определяем направление угловой скорости со 2 стержня 2 и находим ее числовое значение (о 2 = V a /AC 2 = 0,8/1,04 = 0,77 с -1 , где АС 2 - АВ sin 60° = 1,04 м (получим при рассмотрении ААС~,В).

Теперь определяем числовые значения и направления скоростей точек В и D стержня 2 (так как ABDC 2 равносторонний, то ВС 2 - DC 2 - - 0,6 м):

Рассмотрим движение стержня 3. Скорость точки D известна. Так как точка Е принадлежит одновременно и стержню 4, вращающемуся вокруг оси 0 4 , то У е 10 4 Е. Тогда, проводя через точки D и Е прямые, перпендикулярные скоростям V D wV E , находим положение точки С 3 - МЦС стержня

3. По направлению вектора V D , глядя из неподвижной точки С 3 , определяем направление угловой скорости со 3 , а ее числовое значение находим (предварительно определив из AZ)C 3 ? отрезок Z)C 3 = DEsin 30° = 0,35 м): со 3 = V d /C 3 D= 1,32 с -1 .

Для определения скорости точки К проведем прямую КС 3 и, учитывая, что АР КС 3 равносторонний (КС 3 = 0,35 м), вычислим У к = = 0,462 м/с, У к АКС 3 .

Рассмотрим движение стержня_4, вращающегося вокруг оси 0 4 . Зная направление и числовое значение V E , находим направление и значение угловой скорости со 4: со 4 = V e /0 4 E - 2,67 с.

Ответ: V A = 0,8 м/с, V B = V D = 0,462 м/с, V E = 0,8 м/с, со 2 = 0,77 с" 1 , со 3 = 1,32 с -1 , (о 4 = 2,67 с -1 , направления этих величин показаны на рис. 8.11.

Примечание. В механизме, состоящем из нескольких тел, каждое непоступательно движущееся тело имеет в данный момент времени свой мгновенный центр скоростей и свою угловую скорость.

Задача 8.4. Плоский механизм состоит из стержней 1, 2, 3 и катка, катящегося без скольжения по неподвижной плоскости (рис. 8.12, а). Соединения стержней между собой и стержня 3 к катку в точке D - шарнирные. Длины стержней: 1 { - 0,4 м, / 2 = 0,6 м, / 3 = 0,8 м. При данных углах а = 60°, В = 30° известны значения и направления угловой скорости со, = = 2 с и скорости центра О катка V 0 = 0,346 м/с, ZABD = 90°. Определить скорость точки В и угловую скорость со 2 .

Решение. Механизм имеет две степени свободы (его положение определяется двумя углами а и р, не зависящими друг от друга) и скорость точки В (общей точки стержней 2 и 3) зависит от скоростей точек А и D.

Рассматривая движение стержня /, находим направление и значение скорости точки A: V A = coj/j = 0,8 м/с, V a AjO { A.

Рассмотрим движение катка. Его мгновенный центр скоростей расположен в точке Р; тогда V D найдем из пропорции

Так как ADOP равнобедренный и острые углы в нем равны 30°, то DP- 2 OP cos 30° = ОРл/ 3. Из равенства (а) находим V D - 0,6 м/с. Вектор V D направлен перпендикулярно DP.

Так как точка В принадлежит одновременно стержням АВ и BD, то по теореме о проекциях скоростей должно быть: 1) проекция вектора У в на прямую А В У А (отрезок Аа на рис. 8.12, а), т. е. У А cos а = 0,4 м/с; 2) проекция вектора У в на прямую DB равна проекции на эту прямую вектора У 0 (отрезок Dd на рис. 8.12, а), т. е. У 0 cos у = 0,3 м/с (у = 60°).

Далее решаем графически. Откладываем от точки В в соответствующих направлениях отрезки ВЬ { = Аа и Bb 2 = Dd. Скорость точки В равна сумме векторов V B = Bb+ Bbj. Восставляем из точки Ь { перпендикуляр к ВЬ Х, а из


точки b 2 - перпендикуляр к ВЬ 2 . Точка пересечения этих перпендикуляров определяет конец искомого вектора V B .

Так как направления отрезков ВЬ и ВЬ 2 взаимно перпендикулярны, то

Определяем со 2 . На рис. 8.12, б показан так называемый план скоростей, который графически изображает векторное равенство

где векторы V A и V B определены (см. рис. 8.12, а), а направление V BA перпендикулярно стержню АВ. Из чертежа (рис. 8.12, б) находим

Теперь определяем со 2 = V ba /AB- 1,66 с -1 (направление со 2 - против хода часовой стрелки).

Ответ: V B - 0,5 м/с, со 2 = 1,66 с -1 .

Лекция 3. Плоскопараллельное движение твердого тела. Определение скоростей и ускорений.

В данной лекции рассматриваются следующие вопросы:

1. Плоскопараллельное движение твердого тела.

2. Уравнения плоскопараллельного движения.

3. Разложение движения на поступательное и вращательное.

4. Определение скоростей точек плоской фигуры.

5. Теорема о проекциях скоростей двух точек тела.

6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

7. Решение задач на определение скорости.

8. План скоростей.

9. Определение ускорений точек плоской фигуры.

10. Решение задач на ускорения.

11. Мгновенный центр ускорений.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.

Разложение движения на поступательное и вращательное

Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.

Рис.28 Рис.29

Рассмотрим сечение S тела какой-нибудь плоскости Оxy , параллельной плоскости П (рис.29). При плоскопараллельном движе­нии все точки тела, лежащие на прямой ММ ’, перпендикулярной течению S , т. е. плоскости П , движутся тождественно.

Отсюда заключаем, что для изучения движения всего тела дос­таточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S . Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху .

Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты x A и y A точки А и угол , который отрезок АВ образует с осью х . Точку А , выбранную для определения положения фигуры S , будем в дальнейшем называть полюсом.

При движении фигуры величины x A и y A и будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости

Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твер­дого тела.

Первые два из уравнений движения определяют то движение, которое фигура совершала бы при =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А . Третье уравнение определяет движе­ние, которое фигура совершала бы при и , т.е. когда полюс А неподвижен; это будет вращение фи­гуры вокруг полюса А . Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из по­ступательного движения, при котором все точки фигуры движутся так же, как полюс А , и из вращательного движения вокруг этого полюса.

Основными кинематическими характеристиками рассматривае­мого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса , а также угловая скорость и угловое ускорение враща­тельного движения вокруг полюса.


Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюса А , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюса А , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

5)Поступательное движение. Примеры.

Определение вращательного движения тела вокруг неподвижной оси.

Уравнение вращательного движения.

– такое движение, при котором все его точки движутся в плоскостях, перпендикулярных некоторой неподвижной прямой, и описывают окружности с центрами, лежащими на этой прямой, называемой осью вращения.

Движение задается законом изменения двугранного угла φ (угла поворота), образованного неподвижной плоскостью P, проходящей через ось вращения, и плоскостью Q, жестко связанной с телом:



Угловая скорость – величина, характеризующая быстроту изменения угла поворота.

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости.

Определение скорости любой точки плоской фигуры.

1 способ определения скоростей – через векторы. Скорость любой точки плоской фигуры равна геометрической сумме скоростей полюса и вращательной скорости этой точки вокруг полюса. Таким образом, скорость точки B равна геометрической сумме скорости полюса A и вращательной скорости точки B вокруг полюса:

2 способ определения скоростей – через проекции. (теорема о проекциях скоростей) Проекции скоростей точек плоской фигуры на ось, проходящую через эти точки равны.

3)Формулы вычисления скорости и ускорения точки при естественном способе задания её движения.

Вектор скорости; - Проекция скорости на касательную;

Составляющие вектора ускорения; -проекции ускорения на оси t и n;

Таким образом полное ускорение точки есть векторная сумма двух ускорений:

касательного, направленного по касательной к траектории в сторону увеличения дуговой координаты, если (в противном случае – в противоположную) и

нормального ускорения, направленного по нормали к касательной в сторону центра кривизны (вогнутости траектории): Модуль полного ускорения:

4) Формулы вычисления скорости и ускорения точки при координатном способе задания её движения в декартовых координатах.

Составляющие вектора скорости: -Проекции скорости на оси координат:

-составляющие вектора ускорения; -проекции ускорения на оси коодинат;

5)Поступательное движение. Примеры.

(ползун, поршень насоса, спарник колес паровоза, движущегося по прямолинейному пути, кабина лифта, дверь купе, кабина колеса обозрения).- это такое движение, при котором любая прямая, жестко связанная с телом, остается параллельной самой себе. Обычно поступательное движение отождествляется с прямолинейным движением его точек, однако это не так. Точки и само тело (центр масс тела) могут двигаться по криволинейным траекториям, см. например, движение кабины колеса обозрения. Другими словами - это движение без поворотов.

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюсаА , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюсаА , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

В полученном равенстве величина есть скорость полюсаА ; величина же равна скорости , которую точка М получает при , т.е. относительно осей , или, иначе говоря, при вращении фигуры вокруг полюса А . Таким образом, из предыдущего равенства действительно следует, что

Скорость , которую точка М получает при вращении фигуры вокруг полюсаА :

где - угловая скорость фигуры.

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точкиА , принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скорости находятся построением соответствующего параллело­грамма (рис.31).


Рис.30 Рис.31

23. Фактически уравнением поступательного движения твердого тела является уравнение второго закона Ньютона: Используя уравнения:

И получаем .

24.В этом случае составляющие

– момента внешних сил, направленные вдоль x и y , компенсируются моментами сил реакции закрепления .

Вращение вокруг оси z происходит только под действием

6.4 6.5

Пусть некоторое тело вращается вокруг оси z .Получим уравнение динамики для некоторой точки m i этого тела находящегося на расстоянии R i от оси вращения. При этом помним, что и

Направлены всегда вдоль оси вращения z, поэтому в дальнейшем опустим значок z .





Так как у всех точек разная, введем, вектор угловой скорости причем


Так как тело абсолютно твердое, то в процессе вращения m i иR i останутся неизменными. Тогда:

Обозначим I i – момент инерции точки находящейся на расстоянии R от оси вращения:

Так как тело состоит из огромного количества точек и все они находятся на разных расстояниях от оси вращения, то момент инерции тела равен:

где R – расстояние от оси z до dm. Как видно, момент инерции I – величина скалярная.

Просуммировав по всем i- ым точкам,

получим или - Это основное уравнение

динамики тела вращающегося вокруг неподвижной оси .

26) Момент импульса твердого тела.


Момент импульса есть векторная сумма моментов импульсов всех материальных точек тела относительно неподвижной оси.

Если ось вращения твердого тела закреплена, то момент силы перпендикулярный этой оси ()за счет сил трения в подшипниках всегда будет равняться нулю.

Скорость изменения момента импульса твердого тела вдоль оси вращения, которая закреплена, равняется результирующему моменту внешних сил, направленному вдоль этой оси.

– момент инерции.

28)Момент сил трения качения – закон Кулона. Коэффициент трения качения.

Трение качения. Существование трения качения можно установить экспериментально, например, при исследовании качения тяжелого цилиндра радиуса на горизонтальной плоскости.

Если цилиндр и плоскость - твердые тела с шероховатыми поверхностями (рис. 55, a), то их касание будет происходить в точке, сила N уравновешивает силу тяжести P, а горизонтальная сила Q и сила трения F образуют пару сил (Q,F) под действием которой цилиндр должен начинать движение при любых величинах силы Q. В действительности же цилиндр начинает движение после того, как величина силы Q превысит предельное значение Ql.

Этот факт можно объяснить, если предположить, что цилиндр и плоскость деформируются. Тогда их контакт будет происходить по малой площадке или лунке (на рис. 55, b малая площадка изображена своим сечением). При увеличении силы Q центр давления будет перемещаться из середины сечения вправо. В результате образуется пара сил (P,N), которая препятствует началу движения цилиндра. В состоянии предельного равновесия на цилиндр действуют пара сил (Ql,F) с моментом Ql·r и уравновешивающая ее пара (P,N) с моментом N·δ, где δ - значение максимального смещения. Из равенства моментов пар сил находим (6)

Пока Q Ql начинается качение.

Обычно рис. 55, b упрощают, не изображая на нем смещения точки приложения нормальной реакции, добавляя к силам на рис. 55, a пару сил, препятствующую качению цилиндра, как показано на рис. 55, c.

Момент этой пары сил называется моментом трения качения , он равен моменту пары сил (P,N): (7)

Входящая в формулы (6) и (7) величина максимального смещения точки приложения нормальной реакции δ называется коэффициентом трения качения. Он имеет размерность длины и определяется экспериментально. Приведем приближенные значения этого коэффициента (в метрах) для некоторых материалов: дерево по дереву δ = 0,0005-0,0008; мягкая сталь по стали (колесо по рельсу) - 0.00005; закаленная сталь по стали (шарикоподшипник) - 0.00001.

Отношение δ/r в формуле (6) для большинства материалов значительно меньше коэффициента трения покоя f0 . Поэтому в технике, когда это возможно, стремятся скольжение заменить качением (колеса, катки, шарикоподшипники и т.п.).

Закон Амонтона - Кулона

Основная статья: Закон Кулона (механика)

Не путать с законом Кулона!

Основной характеристикой трения является коэффициент трения μ, который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.

В простейших случаях сила трения F и нормальная нагрузка (или сила нормальной реакции) Nnormal связаны неравенством обращающимся в равенство только при наличии относительного движения. Это соотношение называется законом Амонтона - Кулона.

3.5.1. Метод полюса

Поскольку движение плоской фигуры можно рассматривать как составное из поступательного, когда все точки фигуры движутся так же, как полюс А со скоростью , и вращательного движения вокруг полюса, то скорость любой точки В фигуры определим векторной суммой скоростей (рис.23).

, (65)

где - скорость полюса точки А ;

Скорость точки В при вращении фигуры вокруг полюса точки А (если считать его неподвижным) численно равна

В перпендикулярно ВА в сторону вращения угловой скорости (рис.23).

Численное значение скорости точки В определим по теореме косинусов

где – угол между векторами и , Î .

Равенство проекций является следствием неизменности расстояния между точками А и В , принадлежащими твердому телу, поэтому равенство будет справедливо для любого движения твердого тела.

3.5.2. Метод мгновенного центра скоростей (МЦС)

Мгновенным центром скоростей называется точка Р плоской фигуры, скорость которой в данный момент времени равна нулю. Скорости всех других точек плоской фигуры в данный момент времени определяются так, как если бы движение фигуры было вращательным относительно точки Р (рис.25).

Рис.25.

Согласно метода полюса скорость точки В будет равна

. (69)

Так как скорость полюса (МЦС) точки Р равна нулю (), то

Вектор скорости направлен из точки В перпендикулярно ВР в сторону вращения угловой скорости w.

Аналогичное равенство можно представить для всех точек плоской фигуры, таким образом, скорости точек плоской фигуры пропорциональны их расстояниям до МЦС.

Для определения положения (МЦС) плоской фигуры, требуется знать направление линий, вдоль которых действуют вектора скоростей точек А и В ( и ). МЦС для данной фигуры будет находиться в точке пересечения перпендикуляров восстановленных к данным линиям.

Для нахождения скорости точки В , согласно рис.25, требуется знать скорость точки А . Тогда угловая скорость движения фигуры в данный момент времени составит

где АР – расстояние точки А до точки Р , определяется согласно исходным данным.

Угловая скорость под действием скорости относительно полюса точки Р направлена по часовой стрелке.

Скорость точки В в данный момент времени составит

Вектор скорости точки В () направлен перпендикулярно линии РВ в сторону вращения угловой скорости w (рис.25).

3.5.2.1. Понятие о центроидах

Траектория, которую описывает МЦС вместе с подвижной фигурой, называется подвижной центроидой (пример, при движении колеса по поверхности без скольжения (табл.2) подвижной центроидой является внешняя окружность колеса).

Геометрическое место МЦС, положений точки Р на неподвижной плоскости, называют неподвижной центроидой (при движении колеса по поверхности без скольжения (см. табл.2) неподвижной центроидой является неподвижная поверхность, по которой катится колесо).

3.5.2.2. Частные случаи МЦС

Таблица 2.

Мгновенно-поступательное движение звена АВ Движение колеса по поверхности (без скольжения) Движение подвижного блока
Точка В движется по прямой х-х , следовательно, скорость V B направлена вдоль оси, проводим перпендикуляр к оси х-х . Поскольку перпендикулярные линии не пересекаются, то звено АВ находится в мгновенно-поступательном движении, скорости всех точек этого звена равны, МЦС находится в бесконечности, . МЦС находится в точке касания колеса с неподвижной поверхностью, по- которой катится колесо, точке Р . Угловая скорость колеса, составит . Скорости точек В , С МЦС (точка Р ) находится в точке пересечения отрезка АВ и прямой, проходящей через концы векторов и . Определение положения точки Р . Угловая скорость блока

Читайте также: