Движение по криволинейной траектории. Движение тела по криволинейной траектории. Движение по окружности. Характеристики вращательного движения. Центростремительное ускорение Основные виды движений с криволинейной траекторией

Равноускоренное криволинейное движение

Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Неравномерное движение. Скорость при неравномерном движении

Ни одно тело не движется все время с постоянной скоростью. Начиная движение, автомобиль движется быстрее и быстрее. Некоторое время он может двигаться равномерно, но потом он тормозит и останавливается. При этом автомобиль проходит разные расстояния за один и то же время.

Движение, при котором тело за равные промежутки времени проходит неодинаковые отрезки пути, называется неравномерным. При таком движении величина скорости не остается неизменной. В таком случае можно говорить лишь о средней скорости.

Средняя скорость показывает, чему равно перемещение, которое тело проходит за единицу времени. Она равна отношению перемещения тела до времени движения. Средняя скорость, как и скорость тела при равномерном движении, измеряется в метрах, разделенных на секунду. Для того, чтобы характеризовать движение точнее, в физике применяют мгновенную скорость.

Скорость тела в данный момент времени или в данной точке траектории называется мгновенной скоростью. Мгновенная скорость является векторной величиной и направлена так же, как вектор перемещения. Измерить мгновенную скорость можно с помощью спидометра. В Системе Интернациональной мгновенная скорость измеряется в метрах, разделенных на секунду.

точка движение скорость неравномерный

Движение тела по окружности

В природе и технике очень часто встречается криволинейное движение. Оно сложнее прямолинейного, так как существует множество криволинейных траекторий; это движение всегда ускоренное, даже когда модуль скорости не меняется.

Но движение по любой криволинейной траектории можно приблизительно представить как движение по дугам круга.

При движении тела по окружности направление вектора скорости меняется от точки к точке. Поэтому когда говорят о скорости такого движения, подразумевают мгновенную скорость. Вектор скорости направлен по касательной к окружности, а вектор перемещения - по хордам.

Равномерное движение по окружности - это движение, во время которого модуль скорости движения не изменяется, изменяется только ее направление. Ускорение такого движения всегда направлено к центру окружности и называется центростремительным. Для того чтобы найти ускорение тела, которое движется по кругу, необходимо квадрат скорости разделить на радиус окружности.

Помимо ускорения, движение тела по кругу характеризуют следующие величины:

Период вращения тела - это время, за которое тело совершает один полный оборот. Период вращения обозначается буквой Т и измеряется в секундах.

Частота вращения тела - это число оборотов в единицу времени. Частота вращения обозначается буквой? и измеряется в герцах. Для того чтобы найти частоту, надо единицу разделить на период.

Линейная скорость - отношение перемещения тела до времени. Для того чтобы найти линейную скорость тела по окружности, необходимо длину окружности разделить на период (длина окружности равна 2? умножить на радиус).

Угловая скорость - физическая величина, равная отношению угла поворота радиуса окружности, по которой движется тело, до времени движения. Угловая скорость обозначается буквой? и измеряется в радианах, разделенных на секунду. Найти угловую скорость можно, разделив 2? на период. Угловая скорость и линейная между собой. Для того чтобы найти линейную скорость, необходимо угловую скорость умножить на радиус окружности.


Рисунок 6. Движение по окружности, формулы.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории направлен по хорде (рис. 1.19), а l – длина . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это :

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

В данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

— это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.

Простейшим видом движения материи является механическое движение, представляющее собой перемещение в пространстве тел или их частей относительно друг друга.

Различают три вида механического движения тел - поступательное, вращательное и колебательное. При поступательном движении твердого тела все его точки описывают совершенно одинаковые (при наложении совпадающие) линии и имеют одинаковую скорость и одинаковое ускорение (в данный момент времени). Определение вращательного движения тела дано в § 21, колебательного в § 27.

Если форма и размеры тела не оказывают существенного влияния на характер его движения, то такое тело можно рассматривать как материальную точку. Материальной точкой называется тело, формой и размерами которого можно пренебречь в данной задаче. Последняя оговорка весьма существенна: при рассмотрении одного движения тела можно считать его материальной точкой, тогда как при рассмотрении другого движения того же самого тела это может оказаться недопустимым. Например, изучая движение Земли вокруг Солнца, можно и Землю и Солнце считать материальными точками. Изучая же движение Земли вокруг своей оси, нельзя принимать Землю за материальную точку, так как на характер вращательного движения Земли существенно влияют ее форма и размеры.

Перемещение тела можно рассматривать только относительно какого-либо другого тела или группы тел. Поэтому при изучении движения материальной точки необходимо прежде всего выбрать систему отсчета, т. е. систему координат, связанную с телом, относительно которого рассматривается движение материальной точки. Такой системой отсчета может служить, например, прямоугольная система координат XYZ, связанная с какой-нибудь точкой О земной поверхности (рис. 7). Тогда положение материальной точки А в любой момент времени определится координатами xyz. К вопросу о системах отсчета мы еще вернемся в § 14.

Линия, описываемая движущейся материальной точкой, называется траекторией. Отрезок траектории пройденный точкой за некоторый промежуток времени, представляет путь, пройденный точкой

за этот промежуток времени (рис. 7). Движение называется прямолинейным, если траектория - прямая линия, и криволинейным, если траектория - кривая линия.

Пусть материальная точка, двигаясь по криволинейной траектории, прошла за малый промежуток времени малый путь (рис. 8). Проведем касательную к траектории в точке А и хорду А В. Отношение пути, пройденного материальной точкой, к промежутку времени, за который этот путь пройден, называется средней скоростью движения

В общем случае криволинейного (и прямолинейного) движения величина средней скорости может быть различной на разных участках траектории и зависеть от величины рассматриваемого пути или, что то же, от величины промежутка времени Будем бесконечно уменьшать промежуток времени, т. е. положим Тогда точка В будет стремиться к точке хорда к дуге и обе они в пределе совпадут с касательной Таким образом, криволинейное движение по малой дуге перейдет в прямолинейное движение по бесконечно малому отрезку касательной к траектории вблизи точки а средняя скорость на малом пути перейдет в мгновенную, или истинную, скорость в точке А. Поэтому величина мгновенной скорости

Как видно из рис. 8, мгновенная скорость направлена по касательной к траектории.

Итак, мгновенная скорость движения в любой точке траектории есть вектор, направленный по касательной к траектории, а по величине равный пределу средней скорости при стремлении промежутка времени к нулю:

Из формул (1) и (2) следует, что скорость измеряется в Движение материальной точки называется равномерным, если его скорость не изменяется с течением времени; в противном случае движение называется неравномерным. Неравномерность движения характеризуется физической величиной, называемой ускорением.

Пусть материальная точка переместилась за малый промежуток времени из где она имела скорость в В, где она имеет скорость (рис. 9). На рисунке видно, что изменение (приращение) скорости точки есть вектор равный разности векторов конечной и начальной скоростей:

Отношение изменения скорости к промежутку времени, за который это изменение произошло, называется средним ускорением

Из правила деления вектора на скаляр следует, что среднее ускорение направлено так же, как приращение скорости, т. е. под углом к траектории в сторону ее вогнутости (см. рис. 9).

В общем случае величина среднего ускорения может быть различной на различных участках траектории и зависеть от величины промежутка времени, по которому проводится усреднение. Будем уменьшать промежуток времени. В пределе при точка В будет стремиться к точке и среднее ускорение на пути А В превратится в мгновенное, или истинное, ускорение а в точке Поэтому

Итак, мгновенное ускорение движения в любой точке траектории есть вектор, направленный под углом к траектории в сторону ее вогнутости, а по величине равный пределу среднего ускорения при стремлении промежутка времени к нулю.

Из формул (3) и (4) следует, что ускорение измеряется в

Вектор ускорения принято раскладывать на две составляющие, одна из которых направлена по касательной к траектории и называется касательным, или тангенциальным, ускорением другая - по нормали к траектории и называется нормальным, или центростремительным, ускорением (рис. 10). Ускорение и его

составляющие связаны между собой очевидными соотношениями:

Касательное ускорение изменяет только величину скорости, а центростремительное ускорение - только ее направление. Очевидно, что криволинейное движение происходит всегда с ускорением, так как в этом случае скорость обязательно будет изменяться (по крайней мере по направлению).

Пользуясь понятиями высшей математики, можно заменить пределы отношений, стоящих в формулах (2) и (4), производными и написать:

Означают соответственно бесконечно малые изменения (дифференциалы) перемещения, скорости и времени. Следовательно, скорость представляет собой производную перемещения по времени, а ускорение - производную скорости по времени.

Мы ознакомились с общим случаем неравномерного движения материальной точки по криволинейной траектории произвольной формы. В последующих параграфах рассмотрим частные случаи: прямолинейное движение и движение по окружности.


Представим себе материальную точку, движущуюся по некоторой криволинейной траектории . Запишем скорость в виде

и заметим, что вектор

Это единичный вектор, касательный к траектории и совпадающий по направлению с вектором скорости. Продифференцируем вектор скорости, записанный в данном представлении, и получим

Мы представили ускорение в виде двух слагаемых. Заметим прежде всего, что слагаемые ортогональны друг другу. Действительно, поскольку вектор - единичный, то

Дифференцируя это скалярное произведение, получаем

по свойству скалярного произведения.

Таким образом, мы разложили ускорение на сумму двух взаимно ортогональных составляющих, обозначем их и :

Обсудим физический смысл каждого слагаемого. Слагаемое

Это тангенциальное ускорение , которое характеризует быстроту изменения модуля скорости. Эта часть полного ускорения направлена либо по скорости, когда производная dv/dt > 0 , то есть движение ускоренное, либо в сторону противоположную скорости, когда эта производная dv/dt < 0 , то есть движение замедленное. Если движение равномерное dv/dt = 0 , то есть скорость, если и меняется, то лишь по направлению, то тангенциальная часть ускорения равна нулю:

Слагаемое

направлено по нормали к траектории - перпендикулярно касательной к траектории и называется нормальным ускорением . Если тангенциальное ускорение определяет скорость, с которой меняется модуль вектора скорости, то нормальное ускорение определяет скорость, с которой меняется направление вектора скорости.

Рис. 2.10. К определению кривизны траектории

Рассмотрим «достаточно гладкую», в остальном произвольную плоскую криволинейную траекторию. Плоскую, то есть все точки траектории лежат в некоторой плоскости, - исключительно для упрощения выкладок, получаемый в рамках этого предположения, результат годится и для любой «достаточно гладкой» пространственной кривой, чьи точки уложить в одну плоскость невозможно. Последнее обстоятельство мы здесь рассматривать не будем, оно строго доказывается методами аналитической геометрии. Слова «достаточно гладкая» означают, что кривая описывается непрерывной функцией, имеющей непрерывные первую и вторую производные. С точки зрения физических приложений, требование существования непрерывных первых двух производных фактически не является ограничением на форму траектории, так как практически всегда выполнено. Проще говоря, на траектории не должно быть "углов" типа показанного на рисунке 2.11.

Рис. 2.11.

Такую «гладкую» кривую на любом её бесконечно малом участке можно заменить (рис. 2.12) участком окружности некоторого радиуса. Радиус этой окружности, аппроксимирующей траекторию на её бесконечно малом участке в окрестности некоторой точки, принято называть радиусом кривизны траектории в этой точке. Центр этой окружности принято называть центром кривизны траектории в данной точке. Кривизной траектории называется величина C = 1/R . Подчеркнем, что радиус кривизны, как и центр кривизны траектории - её локальные характеристика: каждой точке траектории соответствует свой радиус кривизны и свой центр кривизны. Исключениями являются: 1) окружность, её радиус кривизны во всех её точках один и тот же и равен радиусу окружности, центр кривизны «один на всех» и совпадает с центром окружности, и 2) прямая, для любой точки прямой радиус кривизны бесконечен, а центр кривизны находится в бесконечно удаленной от прямой точке. Это легко понять: давайте увеличивать радиус окружности, чем больше радиус окружности, тем ближе любой её конечный участок к участку прямой. На равнине, лучше всего на пляже, с высоты человеческого роста до горизонта не более пяти километров, - в этих пределах Земля плоская.

Рис. 2.12. К определению радиуса кривизны траектории

Вычислим модуль производной , входящей в выражение для нормального ускорения. Направлен вектор по нормали к траектории к центру к центру кривизны, что поясняет рис. 2.13.

Рис. 2.13. Графическое определение радиуса кривизны траектории

Для этого прежде всего перейдем от дифференцирования по времени к дифференцированию по «пути»: , имеем:

По определению производная кривизне кривой C , а величина ей обратная равна радиусу кривизны кривой R . Собирая всё вместе, для нормального ускорения окончательно получаем:

где нормаль перпендикулярна к касательной и всегда направлена к центру кривизны, см. рис. 11.

Приведем некоторое дополнительное пояснение к рисунку 11. Возьмем неподалеку от точки 1 точку 2 . Построим в этих точках касательные единичные векторы 1 и 2 . Перпендикуляры к этим касательным пересекутся в некоторой точке O 2 . Заметим, что для кривой, не являющейся окружностью, расстояния R 1 и R 2 будут немного отличаться друг от друга. Если теперь точку 2 приближать к точке 1 , пересечение перпендикуляров O 2 будет перемещаться вдоль прямой O 2 1 и в пределе окажется в некоторой точке O 1 . Расстояния R 1 и R 2 будут стремиться к общему пределу R , равному радиусу кривизны, а точка O 1 и будет центром кривизны для точки 1 . Действительно, окружность радиусом R с центром в 0 проходит через точку 1 и касается траектории (так как радиус ортогонален орту 1). Кроме того, по построению бесконечно близкая точка 2 также лежит на этой окружности. Таким образом, построенная окружность действительно «сливается» с траекторией в точке 1 .

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции v x и v y ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

Нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости, r – радиус кривизна траектории в данной точке.

Тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

Кроме центростремительного ускорения, важнейшими характе­ристиками равномерного движения по окружности являются период и частота обращения.

Период обращения - это время, за которое тело совершается один оборот.

Обозначается период буквой Т (с) и определяется по формуле:

где t - время обращения, п - число оборотов, совершенных за это время.

Частота обращения - это величина, численно равная числу оборотов, совершенных за единицу времени.

Обозначается частота греческой буквой (ню) и находится по формуле:

Измеряется частота в 1/с.

Период и частота - величины взаимно обратные:

Если тело, двигаясь по окружности со скоростью v, делает один оборот, то пройденный этим телом путь можно найти, умножив ско­рость v на время одного оборота:

l = vT. С другой стороны, этот путь равен длине окружности 2πr . Поэтому

vT = r,

где w (с -1) - угловая скорость.

При неизменной частоте обращения центростремительное ускорение прямо пропорционально расстоянию от движущейся частицы до центра вращения.

Угловая скорость (w ) – величина, равная отношению угла поворота радиуса, на котором находится вращающаяся точка, к промежутку времени, за который произошел этот поворот:

.

Связь между линейной и угловой скоростями:

Движение тела можно считать известным лишь тогда, когда известно, как движется каждая его точка. Самое простое движение твердых тел – поступательное. Поступательным называется движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается параллельно самой себе.

Читайте также: