Дефекты в кристаллах презентация физика. Свойства дефектов и их ансамблей в конденсированных средах. Перемещение частиц на большие расстояния

  • Размер: 2.2 Mегабайта
  • Количество слайдов: 37

Описание презентации Презентация Де-фекты в кристаллах по слайдам

Энергетические изменения, происходящие при образовании дефектов в совершенном кристалле. Выигрыш в энтропии, связанный с наличием выбора позиций, называется конфигурационной энтропией и определяется по формуле Больцмана S = k ln. W , где W - вероятность образования единичной вакансии, пропорциональная числу регулярных атомов, образующих решетку (10 23 на 1 моль вещества).

Различные типы дефектов в кристаллах: а) вакансия; б) междоузельный атом; в) небольшой дефект замещения; г) большой дефект замещения; д) дефект Френкеля; е) дефект Шоттки (пара вакансий в катионной и анионной подрешетках)

Энергия смещения атома из занимаемого им места в решетке. Энергетический барьер. Для перемещения атома из занимаемого им положения необходима энергия активации. ΔЕ – энергия образования дефекта; Е * — энергия активации. 1 / 1 1 E k. T sn C N e , 2/ 2 2 E k. T mn C N e Равновесие установится, если n 1 = n 2: при равновесных условиях в решетке металла присутствуют вакансии и междоузельные атомы! / / E k. T m s. N N Ce

Дислокации. Механические свойства и реакционная способность твердых тел. 1) — металлы оказываются обычно гораздо пластичнее, чем это можно ожидать на основе расчетов. Расчетная величина напряжений сдвига в металлах составляет 10 5 — 10 6 Н/см 2 , тогда как экспериментально найденные значения на многих металлах не превышают 10 — 100 Н/см 2. Это указывает на то, что в структуре металлов имеются некие «слабые звенья» , благодаря которым металлы деформируются столь легко; 2) — на поверхностях многих кристаллов с хорошей огранкой под микроскопом или даже невооруженным глазом заметны спирали, по которым проходил рост кристалла. Такие спирали не могут образовываться в совершенных кристаллах; 3) — без представлений о существовании дислокаций было бы трудно объяснить такие свойства металлов, как пластичность и текучесть. Пластинки металлического магния, например, могут быть, почти как резина, растянуты в несколько раз по сравнению с первоначальной длиной; 4) — наклеп в металлах не удавалось объяснить без привлечения представлений о дислокациях.

Расположение атомов вокруг краевой дислокации Краевая дислокация представляет собой «лишнюю» атомную полуплоскость, которая проходит не через весь кристалл, а только через его часть. Проекция краевой дислокации.

Перемещение краевой дислокации под действием сдвигового напряжения. Если соединить точки А и В, то это будет проекция плоскости скольжения, вдоль которой перемещаются дислокации. Дислокации характеризуются вектором Бюргерса b. Для нахождения величины и направления b надо описать вокруг дислокации контур, мысленно проводя его от атома к атому (рис. д). В бездефектной области кристалла такой контур ABCD , построенный из трансляций на одно межатомное расстояние в каждом направлении, замкнут: начало и конец его совпадают в точке А. Напротив, контур 12345, окружающий дислокацию, незамкнут, так как точки 1 и 5 не совпадают. Величина вектора Бюргерса равна расстоянию 1 — 5, а направление тождественно направлению 1 — 5 (или 5 — 1). Вектор Бюргерса краевой дислокации перпендикулярен линии дислокации и параллелен направлению движения линии дислокации (или направлению сдвига) под действием приложенного напряжения.

Винтовая дислокация При продолжающемся воздействии сдвигового напряжения, показанного стрелками, линия SS ‘ и следы скольжения достигают задней грани кристалла. Для нахождения вектора Бюргерса винтовой дислокации снова представим себе контур 12345 (рис. а), «обходящий» вокруг нее. Вектор b определяется величиной и направлением отрезка 1 — 5. У винтовой дислокации он параллелен линии дислокации SS ‘ (в случае краевой перпендикулярен) и перпендикулярен направлению движения дислокации, совпадая при этом, как и в случае краевой дислокации, с направлением сдвига или скольжения.

Линия дислокации, изменяющая характер дислокации от винтовой к краевой. Зарождение и движение дислокационной петли Природа дислокаций такова, что они не могут заканчиваться внутри кристалла: если в каком-то месте поверхности кристалла дислокация входит в кристалл, то это означает, что где-то на другом участке поверхности она выходит из кристалла.

Схема возникновения дислокационной петли (кольца) Схемы возникновения вакансий (б) путем аннигиляции двух дислокаций противоположного знака (а). В действительности прямое приложение внешней деформирующей силы для образования дислокаций не обязательно. Такой силой могут быть термические напряжения, возникающие при кристаллизации, или, например, аналогичные напряжения в области посторонних включений в затвердевающем металлическом слитке при охлаждении расплава и др. В реальных кристаллах лишние экстраплоскости могут возникать одновременно в разных частях кристалла. Экстраплоскость, а значит и дислокации подвижны в кристалле. В этом состоит их первая важная особенность. Вторая особенность дислокаций состоит в их взаимодействии с образованием новых дислокаций, дислокационных петель, аналогичных тем, что показаны на рисунках, представленных ниже, и даже с образованием вакансий за счет аннигиляции двух дислокаций противоположного знака.

Механическая прочность металлов. Модель Френкеля. Разрушающую силу принято именовать напряжением и обозначать σ. По этой модели сопротивление σ сначала растет по мере увеличения сдвига вдоль оси х и потом падает до нуля, как только атомные плоскости сдвинутся на одно межатомное расстояние а. При х>а значение σ снова растет и опять падает до нуля при х=2а и т. д. , т. е. σ(х) - периодическая функция, которую можно представить в виде σ = A sin (2 π х/а) , для области малых х A = G /(2π), где G — модуль Юнга. Более строгая теория впоследствии дала уточненное выражение σ m ах = G /30. Схема сдвига атомных плоскостей (а) и зависимость напряжения от расстояния в кристалле (б).

Экспериментальные и теоретические значения предела сдвиговой прочности некоторых металлов. Роликовая модель сдвига атомных плоскостей кристалла | F 1 + F 2 |=| F 4 + F 5 | вся система роликов находится в равновесии. Стоит лишь слегка изменить равновесие сил слабым внешним воздействием, и верхний ряд роликов переместится. Поэтому движение дислокации, т. е. совокупности дефектных атомов, происходит при малых нагрузках. Теория дает σ m ах, сдвигающее дислокацию, в виде σ m ах = ехр { — 2 π a / [ d (1- ν) ]} , где ν — коэффициент Пуассона (поперечная упругость), d — расстояние между плоскостями скольжения, а — период кристаллической решетки. Полагая а = d , ν = 0, 3 , получаем значения σ m ах в последнем столбце таблицы, откуда видно, что они гораздо ближе к экспериментальным.

Схема перемещения гусеницы Схемы перемещения дислокационного типа: а — растягивающая дислокация, б — сжимающая дислокация, в — перемещение ковра. «Для начала попытаемся протащить гусеницу по земле. Сделать это, оказывается, не просто, для этого нужны значительные усилия. Они обусловлены тем, что мы пытаемся одновременно оторвать от земли все пары лапок гусеницы. Сама же гусеница перемещается в ином режиме: от поверхности она отрывает только одну пару лапок, переносит их по воздуху, опускает на землю, затем то же повторяет со следующей парой лапок и т. д. , и т. д. После того как таким образом будут перенесены по воздуху все пары лапок, вся гусеница в целом переместится на расстояние, на которое поочередно смещалась каждая из пар лапок. Ни одну из пар лапок гусеница не волочит по земле. Именно поэтому и ползет легко» .

Пути управления дислокационными дефектами. Закрепление примесями. П римесный атом взаимодействует с дислокацией и перемещение такой дислокации, отягощенной примесными атомами, оказывается затрудненным. Поэтому эффективность закрепления дислокаций примесными атомами будет определяться энергией взаимодействия Е, которая в свою очередь складывается из двух составляющих: Е 1 и Е 2. Первая составляющая (Е 1) представляет собой энергию упругого взаимодействия, а вторая (Е 2) - энергию электрического взаимодействия. Закрепление посторонними частицами. Посторонние частицы — микроскопические включения вещества, отличающегося от основного металла. Эти частицы вводятся в металлический расплав и остаются в металле после его затвердевания при охлаждении расплава. В ряде случаев эти частицы вступают в химическое взаимодействие с основным металлом, и тогда эти частицы представляют уже сплав. Механизм закрепления дислокаций такими частицами основан на различной скорости перемещения дислокаций в металлической матрице и в материале посторонних частиц. Закрепление включениями второй фазы. Под второй фазой понимают выделение (преципитаты) избыточной по сравнению с равновесной, концентрации примеси из раствора металл — примесь. Процесс выделения называют распадом твердого раствора. Переплетение дислокаций. При высокой плотности дислокаций в металле происходит их переплетение. Это связано с тем, что одни дислокации начинают двигаться вдоль пересекающихся плоскостей скольжения, препятствуя продвижению других.

Качественный вид кривой растворимости. Если кристалл содержал при температуре Т m концентрацию С m и был быстро охлажден, то он будет иметь концентрацию С m и при низких температурах, например при Т 1 хотя равновесная концентрация должна быть С 1. Избыточная концентрация ΔС = C m – C 1 должна при достаточно длительном нагреве выпасть из раствора, ибо только при этом раствор примет стабильное равновесное состояние, соответствующее минимуму энергии системы А 1- x В x.

Методы обнаружения дислокаций а) Микрофотография (получена в просвечивающем электронном микроскопе, TEM) кристалла Sr. Ti. O 3 , содержащего две краевые дислокации (100) (отмечены на рисунке). б) Схематическое представление краевой дислокации. в) Микрофотография поверхности кристалла Ga. As (полученная в сканирующем туннельном микроскопе). В точке С винтовая дислокация. г) Схема винтовой дислокации.

Визуализация дислокаций с помощью просвечивающего электронного микроскопа. а) Темные линии на ярком фоне – линии дислокации в алюминии после 1% растяжения. б) Причина контраста области дислокации — и скривление кристаллографических плоскостей приводит к дифракции электронов, что ослабляет прошедший электронный луч

а) Ямки травления на поверхности {111} изогнутой меди; б) на поверхности {100} в) {110} рекристаллизованного Al -0, 5 % Mn. Дислокации можно сделать видимыми и в обычном оптическом микроскопе. Поскольку области вокруг точки выхода дислокаций на поверхность больше подвержены химическому травлению, на поверхности образуются так называемые ямки травления, которые хорошо видны в оптическом микроскопе. Их форма зависит от индексов Миллера поверхности.

Д ля получения металлического материала с повышенной прочностью необходимо создать большое количество центров закрепления дислокаций, причем такие центры должны быть распределены равномерно. Эти требования привели к созданию суперсплавов. Новые металлические функциональные материалы. «Конструирование» структуры сплавов Суперсплав представляет собой по крайней мере двухфазную систему, в которой обе фазы отличаются в первую очередь степенью порядка в атомной структуре. Суперсплав существует в системе Ni - Al. В этой системе может образовываться обычная смесь, т. е. сплав с хаотическим распределением атомов Ni и А l . Этот сплав имеет кубическую структуру, но узлы куба замещаются атомами Ni или А l , беспорядочно. Этот неупорядоченный сплав называют γ — фазой.

Наряду с γ — фазой в системе Ni - А l может образовываться интерметаллическое соединение Ni 3 А l тоже с кубической структурой, но упорядоченной. Кубоиды Ni 3 А l называют γ ‘ -фазой. В γ ‘-фазе атомы Ni и А l занимают узлы кубической решетки уже по строгому закону: на один атом алюминия приходятся три атома никеля. Схема перемещения дислокаций в упорядоченном кристалле

C хема закрепления дислокации включениями другой фазы. ДД – движущаяся дислокация. Чтобы получить суперсплав, расплавляют никель и смешивают с алюминием. При охлаждении расплавленной смеси сначала затвердевает неупорядоченная γ -фаза (ее температура кристаллизации высока), а затем внутри нее при понижении температуры формируются небольшие по размерам кубоиды γ ‘-фазы. Варьируя скорость охлаждения, можно регулировать кинетику образования, а значит и размеры включений γ ‘-фазы Ni 3 А l.

Следующим шагом в разработке высокопрочных металлических материалов явилось получение чистого Ni 3 Al без γ -фазы. Вид мелкозернистой мозаичной структуры металла. Этот материал очень хрупок: скалывание происходит по границам зерен мозаичной структуры. Здесь выявляются другие виды дефектов, в частности поверхность. Действительно, на поверхности кристалла - обрыв химических связей, т. е. нарушение - обрыв кристаллического поля, а это - главная причина образования дефекта. Оборванные химические связи ненасыщены, а в контакте они уже деформированы и поэтому ослаблены. Схема обрыва химических связей на поверхности кристалла.

Для устранения этих дефектов надо: — либо изготавливать монокристаллический материал, не содержащий отдельных зерен-кристаллитов; — либо найти «буфер» в виде примесей, которые не проникали бы в заметных количествах в объем Ni 3 Al , но хорошо адсорбировались бы на поверхности и заполняли вакансии. Наибольшим сродством к вакансиям обладают изовалентные примеси, т. е. примеси, атомы которых находятся в той же группе Периодической системы, что и атом, удаленный из кристаллической решетки и образовавший вакансию. Суперсплавы Ni 3 Al и Ni 3 Al сегодня широко применяются как жаропрочные материалы при температурах до 1000°С. Аналогичные суперсплавы на основе кобальта имеют несколько меньшую прочность, но сохраняют ее вплоть до температуры 1100°С. Дальнейшие перспективы связаны с получением интерметаллических соединений Ti. Al и Т i 3 А l в чистом виде. Детали, изготовленные из них, оказываются на 40 % легче, чем те же детали из никелевого суперсплава.

Сплавы с легкой деформируемостью под нагрузкой. Методом создания таких металлических материалов является изготовление структуры с зернами-кристаллитами очень малых размеров. Зерна, имеющие размеры менее 5 мкм, под нагрузкой скользят друг по другу без разрушения. Образец, состоящий из таких зерен, выдерживает без разрушения относительное растяжение Δ l / l 0 = 10 , т. е. длина образца увеличивается на 1000 % от первоначальной длины. Это - эффект сверхпластичности. Он объясняется деформацией связей в контактах зерен, т. е. большим количеством поверхностных дефектов. Сверхпластичный металл можно обрабатывать почти как пластилин, придавая ему желаемую форму, а затем деталь из такого материала термообрабатывают для укрупнения зерен и быстро охлаждают, после чего эффект сверхпластичности исчезает, и деталь используют по назначению. Главная трудность при получении сверхпластичных металлов состоит в достижении мелкодисперсной зернистой структуры.

Никелевый порошок удобно получать методом выщелачивания, при котором сплав Al - Ni измельчают, с помощью щелочи Na. OH выщелачивают алюминий и получают порошок с диаметром частиц около 50 нм, но эти частицы настолько активны химически, что используются в качестве катализатора. Активность порошка объясняется большим числом поверхностных дефектов - оборванных химических связей, способных присоединять электроны от адсорбируемых атомов и молекул. Схема быстрой кристаллизации распыляемого на центрифуге расплава металла: 1 - охлаждающий газ; 2 - расплав; 3 - струя расплава; 4 - мелкие частицы; 5 - вращающийся диск Схема динамического прессования металлических порошков: 1-снаряд, 2 - порошок, 3 - пресс-форма, 4 - ствол пушки

Метод лазерного глазурирования. Термин заимствован из фарфорового (керамического) производства. С помощью лазерного излучения расплавляется тонкий слой на поверхности металла и применяется быстрое охлаждение со скоростями порядка 10 7 К/с. Предельным случаем сверхбыстрого твердения является получение аморфных металлов и сплавов - металлических стекол.

Сверхпроводящие металлы и сплавы Материал Al V In Nb Sn Pb Nb 3 Sn Nb 3 Ge Т с, К 1, 19 5, 4 3, 4 9, 46 3, 72 7, 18 18 21. . . 23В 1911 г. в Голландии Камерлинг-Оннес открыл уменьшение удельного сопротивления ртути при температуре кипения жидкого гелия (4, 2 К) до нуля! Переход в сверхпроводящее состояние (ρ = 0) происходил скачком при некоторой критической температуре Т с. До 1957 г. явление сверхпроводимости не имело физического объяснения, хотя мир был занят поиском все новых и новых сверхпроводников. Так, к 1987 г. было известно около 500 металлов и сплавов с разными значениями Т с. Максимальной Т с обладали соединения ниобия.

Незатухающий ток. Если в металлическом кольце возбудить электрический ток, то при обычной, например, комнатной температуре он быстро затухает, поскольку протекание тока сопровождается тепловыми потерями. При Т ≈ 0 в сверхпроводнике ток становится незатухающим. В одном из опытов ток циркулировал в течение 2, 5 лет, пока не прекратили. Поскольку ток течет без сопротивления, а количество выделяемого током тепла Q =0, 24 I 2 Rt , то в случает R = 0 тепловые потери просто отсутствуют. Излучение в сверхпроводящем кольце отсутствует по причине квантования. Но в атоме квантуются (принимают дискретные значения) импульс и энергия одного электрона, а в кольце - ток, т. е. вся совокупность электронов. Таким образом, мы имеем пример кооперативного явления - движение всех электронов в твердом теле строго согласовано!

Эффект Мейснера Открыт в 1933 г. Его сущность состоит в том, что внешнее магнитное поле при Т < Т с не проникает в толщу сверхпроводника. Экспериментально это наблюдается при Т=Т с в виде выталкивания сверхпроводника из магнитного поля, как и полагается диамагнетику. Этот эффект объясняется тем, что в поверхностном слое толщиной 0, 1 мкм внешнее магнитное поле индуцирует постоянный ток, но тепловых и излучательных потерь нет и в результате вокруг этого тока возникает постоянное незатухающее магнитное поле. Оно противоположно по направлению внешнему полю (принцип Ле-Шателье) и экранирует толщу сверхпроводника от внешнего магнитного поля. При увеличении Н до некоторого значения Н с сверхпроводимость разрушается. Значения Н с лежат в интервале 10 -2 . . . 10 -1 Т для различных сверхпроводников. http: //www. youtube. com/watch? v=bo 5XTURGMTM

Если бы не было эффекта Мейснера, проводник без сопротивления вел бы себя по-другому. При переходе в состояние без сопротивления в магнитном поле он бы сохранял магнитное поле и удерживал бы его даже при снятии внешнего магнитного поля. Размагнитить такой магнит можно было бы, только повышая температуру. Такое поведение, однако, на опыте не наблюдается

Помимо рассмотренных сверхпроводников, которые получили название сверхпроводников первого рода, были открыты (А, В. Шубников, 1937. ; А. Абрикосов, 1957 г.) сверхпроводники второго рода. В них внешнее магнитное поле при достижении некоторого Н с1 проникает в образец, и электроны, скорости которых направлены перпендикулярно Н, под влиянием силы Лоренца начинают двигаться по окружности. Возникают вихревые нити. «Ствол» нити получается несверхпроводящим металлом, а вокруг него движутся электроны сверхпроводимости. В результате образуются смешанный сверхпроводник, состоящий из двух фаз - сверхпроводящей и нормальной. Только при достижении другого, более высокого значения Н c 2 нити, расширяясь, сближаются, и сверхпроводящее состояние разрушается полностью. Значения Н с2 достигают 20. . . 50 Т у таких сверхпроводников, как Nb 3 Sn и Pb. Mo 6 O 8 соответственно.

Схема джозефсоновской структуры: 1-диэлектрическая прослойка; 2-сверхпроводники Структура состоит из двух сверхпроводников, разделенных диэлектрической тонкой прослойкой. Эта структура находится при некоторой разности потенциалов, задаваемой внешним напряжением V. Из теории, развитой Фейнманом, следует выражение для тока I , протекающего через структуру: I= I 0 sin [(2e. V/h)t+ φ 0 ], где I 0 = 2Кρ/ h (К — константа взаимодействия обоих сверхпроводников в джозефсонской структуре; ρ - плотность частиц, переносящих сверхпроводящий ток). Величина φ 0 = φ 2 — φ 1 рассматривается как разность фаз волновых функций электронов в контактирующих сверхпроводниках. Видно, что даже в отсутствие внешнего напряжения (V = 0) через контакт течет постоянный ток. Это и есть стационарный эффект Джозефсона. Если поместить джозефсоновскую структуру в магнитное поле, то магнитный поток Ф вызывает изменение Δ φ , и в результате получаем: I= I 0 sinφ 0 cos (Ф / Ф 0) , где Ф 0 - квант магнитного потока. Величина Ф 0 = h с/е равна 2, 07· 10 -11 Т·см 2. Столь малое значение Ф 0 позволяет изготавливать сверхчувствительные измерители магнитного поля (магнитомеры), фиксирующие слабые магнитные поля от биотоков мозга и сердца.

Уравнение I= I 0 sin [(2e. V/h)t+ φ 0 ] показывает, что в случае V ≠ 0 ток будет осциллировать с частотой f =2 e. V / h. Численно f попадает в микроволновый диапазон. Таким образом, джозефсоновский контакт позволяет создавать переменный ток с помощью постоянной разности потенциалов. Это - нестационарный эффект Джозефсона. Переменный джозефсоновский ток так же, как и обычный ток в колебательном контуре, будет излучать электромагнитные волны, и это излучение действительно наблюдается на опыте. Для высококачественных джозефсоновских S - I - S контактов толщина диэлектрической прослойки I должна быть чрезвычайно малой - не более нескольких нанометров. В противном случае сильно снижается константа связи К, определяющая ток I 0 . Но тонкая изолирующая прослойка деградирует с течением времени из-за диффузии атомов из сверхпроводящих материалов. Кроме того, тонкая прослойка и значительная диэлектрическая постоянная ее материала приводит к большой электрической емкости структуры, что ограничивает ее практическое использование.

Основные качественные представления о физике явления сверхпроводимости. Механизм образования куперовских пар Рассмотрим пару электронов е 1 и e 2 , которые отталкиваются кулоновским взаимодействием. Но существует и другое взаимодействие: например, электрон е 1 притягивает один из ионов I и смещает его из положения равновесия. Ион I создает электрическое поле, действующее на электроны. Поэтому его смещение повлияет и на другие электроны, например, на e 2. Таким образом, возникает взаимодействие электронов е 1 и e 2 через кристаллическую решетку. Электрон притягивает ион, но так как Z 1 > Z 2 , то электрон вместе с ионной «шубой» имеет положительный заряд и притягивает второй электрон. При Т > Т с тепловое движение размывает ионную «шубу» . Смещение иона - это возбуждение атомов решетки, т. е. не что иное, как рождение фонона. При обратном переходе излучается фонон, и он поглощается другим электроном. Значит взаимодействие электронов - это обмен фононами. В результате весь коллектив электронов твердого тела оказывается связанным. В каждый данный момент электрон сильнее связан с одним из электронов в этом коллективе, т. е. весь электронный коллектив как бы состоит из электронных пар. Внутри пары электроны связаны определенной энергией. Поэтому повлиять на эту пару могут лишь те воздействия, которые преодолеют энергию связи. Оказывается, что обычные столкновения изменяют энергию на очень малую величину, и она не оказывает влияния на электронную пару. Поэтому электронные пары движутся в кристалле без столкновений, без рассеяния, т. е. сопротивление току равно нулю.

Практическое применение низкотемпературных сверхпроводников. Сверхпроводящие магниты, из проволоки сверхпроводящего сплава Nb 3 Sn. В настоящее время уже построены сверхпроводящие соленоиды с полем 20 Т. Перспективными считаются материалы, отвечающие формуле М х Мо 6 O 8 , где атомы металла М - это Pb , Sn , Cu , Ag и др. Наибольшее магнитное поле (приблизительно 4 0 T) получено в соленоиде из Pb. Mo 6 O 8. Колоссальная чувствительность джозефсоновских переходов к магнитному полю послужила основой их применения в приборостроении, медицинской аппаратуре и электронике. СКВИД - сверхпроводящий квантовый интерференционный датчик, используемый для магнитоэнцефалографии. На эффекте Мейснера в ряде исследовательских центров разных стран проводятся работы по магнитной левитации - «парению» над поверхностью для создания высокоскоростных поездов на магнитной подвеске. Индукционные накопители энергии в виде контура с незатухающим током и линии передач электроэнергии (ЛЭП) без потерь по сверхпроводящим проводам. Магнитогидродинамические (МГД) генераторы со сверхпроводящими обмотками. Они имеют КПД преобразования тепловой энергии в электрическую 50 %, в то время как у всех других электростанций он не превышает 35 %.

Дефектами в кристаллах называют нарушения идеальной кристаллической структуры. Такое нарушение может заключаться в замене атома данного вещества чужим атомом (атомом примеси) (рис. 1, а), во внедрении лишнего атома в междоузлие (рис. 1, б), в отсутствии атома в узле (рис. 1, в). Подобные дефекты называют точечными .

Они вызывают нарушения правильности решетки, распространяющиеся на расстояния порядка нескольких периодов.

Кроме точечных, существуют дефекты, сосредоточенные вблизи некоторых линий. Их называют линейными дефектами или дислокациями . Дефекты такого вида нарушают правильное чередование кристаллических плоскостей.

Простейшими видами дислокаций являются краевая и винтовая дислокации.

Краевая дислокация обусловливается лишней кристаллической полуплоскостью, внедренной между двумя соседними слоями атомов (рис. 2). Винтовую дислокацию можно представить как результат разреза кристалла по полуплоскости и последующего сдвига лежащих по разные стороны разреза частей решетки навстречу друг другу на величину одного периода (рис. 3).

Дефекты оказывают сильное влияние на физические свойства кристаллов, в том числе и на их прочность.

Первоначально имевшаяся дислокация под воздействием созданных в кристалле напряжений перемещается вдоль кристалла. Перемещению дислокаций препятствует наличие других дефектов в кристалле, например, присутствие атомов примеси. Дислокации тормозятся также при пересечении друг с другом. Увеличение плотности дислокаций и возрастание концентрации примесей приводит к сильному торможению дислокаций и прекращению их движения. В результате прочность материала растет. Так, например, повышение прочности железа достигается растворением в нем атомов углерода (сталь).

Пластическая деформация сопровождается разрушением кристаллической решетки и образованием большого количества дефектов, препятствующих перемещению дислокаций. Этим объясняется упрочение материалов при их холодной обработке.

«Тепловое излучение» - Приводит к выравниванию температуры тела. Примеры теплопроводности: Примеры конвекции. Примеры излучения. Конвекция. Теплопроводность в природе и технике. Коэффициент пропорциональности называют коэффициентом теплопроводности. Тепловое излучение.

«Физика твёрдого тела» - Положительно заряженные ионы (остов). Энергия ЕF называется энергией Ферми. Уровни изолированного атома. Расстояние между атомами. Схема зонной структуры полупроводника. Расщепление уровней при сближении атомов (принцип Паули). Плотность заряда в произ-вольной точке поверхности: Т.5, М: Мир, 1977, С. 123.

«Вода как растворитель» - Роль воды в промышленности, сельском хозяйстве и быту очень велика и многообразна. Вода – самое распространенное вещество на нашей планете. Применение воды и растворов. Вода играет главную роль в жизни растений и животных. Вода является универсальным растворителем. Учитель физики Коришонкова Н.А. Вода-растворитель.

«Свойства твёрдых тел» - Жидкие кристаллы. Расположение атомов в кристаллических решетках не всегда правильное. Алмаз. Свойства кристаллических веществ определяются структурой кристаллической решетки. Кристалл турмалина. Механическая прочность Теплопроводность Электропроводность Оптические свойства. Аморфные. Дефекты в кристаллических решетках.

«Температура и тепловое равновесие» - Цель урока: Свойства температуры: Шкала Цельсия. Фрагмент урока физики в 10 классе. Мера средней кинетической энергии молекул. Температура. Тема: «Температура». Шкала Кельвина.

«Молекулярно-кинетическая теория» - Броуновское движение – беспорядочное движение частиц. Доказательства первого положения МКТ. Химический элемент- совокупность атомов одного вида. Молекула- система из небольшого числа связанных друг с другом атомов. Основные понятия МКТ. Частицы вещества взаимодействуют друг с другом. Доказательства второго положения МКТ.

Дефекты в кристаллах

Всякий реальный кристалл не имеет совершенной структуры и обладает рядом нарушений идеальной пространственной решетки, которые называются дефектами в кристаллах.

Дефекты в кристаллах подразделяют на нульмерные, одномерные и двумерные. Нульмерные (точечные) дефекты можно подразделить на энергетические, электронные и атомные.

Наиболее распространены энергетические дефекты - фононы - временные искажения регулярности решетки кристалла, вызванные тепловым движением. К энергетическим дефектам кристаллов относятся также временные несовершенства решетки (возбужденные состояния), вызываемые воздействием различных радиаций: света, рентгеновского или γ-излучения, α-излучения, потока нейтронов.

К электронным дефектам относятся избыточные электроны, недостаток электронов (незаполненные валентные связи в кристалле - дырки) и экситоны. Последние представляют собой парные дефекты, состоящие из электрона и дырки, которые связаны кулоновскими силами.

Атомные дефекты проявляются в виде вакантных узлов (дефекты Шотки, рис. 1.37), в виде смещения атома из узла в междоузлие (дефекты Френкеля, рис. 1.38), в виде внедрения в решетку чужеродного атома или иона (рис. 1.39). В ионных кристаллах для сохранения электронейтральности кристалла концентрации дефектов Шотки и Френкеля должны быть одинаковыми как для катионов, так и для анионов.

К линейным (одномерным) дефектам кристаллической решетки относятся дислокации (в переводе на русский язык слово «дислокация» означает «смещение»). Простейшими видами дислокаций являются краевая и винтовая дислокации. О характере их можно судить по рис. 1.40-1.42.

На рис. 1.40, а изображено строение идеального кристалла в виде семейства параллельных друг другу атомных плоскостей. Если одна из этих плоскостей обрывается внутри кристалла (рис. 1.40, б), то место обрыва ее образует краевую дислокацию. В случае винтовой дислокации (рис. 1.40, в) характер смещения атомных плоскостей иной. Здесь нет обрыва внутри кристалла какой-нибудь из атомных плоскостей, но сами атомные плоскости представляют собой систему, подобную винтовой лестнице. По существу, это одна атомная плоскость, закрученная по винтовой линии. Если обходить по этой плоскости вокруг оси винтовой дислокации (штриховая линия на рис. 1.40, в), то с каждым оборотом будем подниматься или опускаться на один шаг винта, равный межплоскостному расстоянию.

Детальное исследование строения кристаллов (с помощью электронного микроскопа и другими методами) показало, что монокристалл состоит из большого числа мелких блоков, слегка дезориентированных друг относительно друга. Пространственную решетку внутри каждого блока, можно считать достаточно совершенной, но размеры этих областей идеального порядка внутри кристалла очень малы: полагают, что линейные размеры блоков лежат в пределах от 10-6 до 10 -4см.

Любая конкретная дислокация может быть представлена как сочетание краевой и винтовой дислокации.

К двумерным (плоскостным) дефектам относятся границы между зернами кристаллов, ряды линейных дислокаций. Сама поверхность кристалла тоже может рассматриваться как двумерный дефект.

Точечные дефекты типа вакансий имеются в каждом кристалле, как бы тщательно он ни выращивался. Более того, в реальном кристалле вакансии постоянно зарождаются и исчезают под действием тепловых флуктуации. По формуле Больцмана равновесная концентрация вакансий пв в кристалле при данной температуре (Т) определится так:

где п - число атомов в единице объема кристалла, е - основание натуральных логарифмов, k - постоянная Больцмана, Ев - энергия образования вакансий.

Для большинства кристаллов энергия образования вакансий примерно равна 1 эв, при комнатной температуре kT » 0,025 эв,

следовательно,

При повышении температуры относительная концентрация вакансий довольно быстро растет: при Т = 600° К она достигает 10-5, а при 900° К-10-2.

Аналогичные рассуждения можно сделать относительно концентрации дефектов по Френкелю, с учетом того, что энергия образования внедрений значительно больше (порядка 3-5 эв).

Хотя относительная концентрация атомных дефектов может быть небольшой, но изменения физических свойств кристалла, вызванные ими, могут быть огромными. Атомные дефекты могут влиять на механические, электрические, магнитные и оптические свойства кристаллов. В качестве иллюстрации приведем лишь один пример: тысячные доли атомного процента некоторых примесей к чистым полупроводниковым кристаллам изменяют их электрическое сопротивление в 105-106 раз.

Дислокации, являясь протяженными дефектами кристалла, охватывают своим упругим полем искаженной решетки гораздо большее число узлов, чем атомные дефекты. Ширина ядра дислокации составляет всего несколько периодов решетки, а длина его достигает многих тысяч периодов. Энергия дислокаций оценивается величиной порядка 4 10 -19 дж на 1 м длины дислокации. Энергия дислокаций, рассчитанная на одно межатомное расстояние вдоль длины дислокации, для разных кристаллов лежит в пределах от 3 до 30эв. Такая большая энергия, необходимая для создания дислокаций, является причиной того, что число их практически не зависит от температуры (атермичность дислокаций). В отличие от вакансий [см. формулу (1.1), вероятность возникновения дислокаций за счет флуктуации теплового движения исчезающе мала для всего интервала температур, в котором возможно кристаллическое состояние.

Важнейшим свойством дислокаций является их легкая подвижность и активное взаимодействие между собой и с любыми другими дефектами решетки. Не рассматривая механизм движения дислокаций, укажем, что для того, чтобы вызвать движение дислокации, достаточно создать в кристалле небольшое напряжение сдвига порядка 0,1кГ/мм2. Уже под влиянием такого напряжения дислокация будет перемещаться в кристалле, пока не встретит какого-либо препятствия, которым может быть граница зерна, другая дислокация, атом внедрения и т. д. При встрече с препятствием дислокация искривляется, огибает препятствие, образуя расширяющуюся дислокационную петлю, которая затем отшнуровывается и образует отдельную дислокационную петлю, причем в области обособленной расширяющейся петли остается отрезок линейной дислокации (между двумя препятствиями), который под воздействием достаточного внешнего напряжения снова будет изгибаться, и весь процесс повторится снова. Таким образом, видно, что при взаимодействии движущихся дислокаций с препятствиями происходит рост числа дислокаций (их размножение).

В недеформированных металлических кристаллах через площадку в 1 см2 проходит 106-108 дислокаций, при пластической деформации плотность дислокаций возрастает в тысячи, а иногда и в миллионы раз.

Рассмотрим, какое влияние оказывают дефекты кристалла на его прочность.

Прочность идеального кристалла можно рассчитать как силу, необходимую для того, чтобы оторвать атомы (ионы, молекулы) друг от друга, либо сдвинуть их, преодолев силы межатомного сцепления, т. е. идеальная прочность кристалла должна определяться произведением величины сил межатомной связи на количество атомов, приходящихся на единицу площади соответствующего сечения кристалла. Прочность же реальных кристаллов на сдвиг обычно на три-четыре порядка ниже расчетной идеальной прочности. Такое большое снижение прочности кристалла нельзя объяснить уменьшением рабочей площади поперечного сечения образца за счет пор, каверн и микротрещин, так как при ослаблении прочности в 1000 раз каверны должны были бы занимать 99,9% площади поперечного сечения кристалла.

С другой стороны, прочность монокристаллических образцов, во всем объеме которых сохраняется приблизительно единая ориентация кристаллографических осей, значительно ниже прочности поликристаллического материала. Известно также, что в ряде случаев кристаллы с большим числом дефектов обладают более высокой прочностью, чем кристаллы с меньшим количеством дефектов. Сталь, например, представляющая собой железо, «испорченное» примесью углерода и другими присадками, обладает значительно более высокими механическими свойствами, чем чистое железо.

Несовершенство кристаллов

До сих пор мы рассматривали идеальные кристаллы. Это позволило нам объяснить ряд характеристик кристаллов. На самом деле кристаллы не являются идеальными. В них могут в большом количестве присутствовать разнообразные дефекты. Некоторые свойства кристаллов, в частности электрические и другие, также зависят от степени совершенства этих кристаллов. Такие свойства называют структурно – чувствительными свойствами. Существуют 4 основных типа несовершенств в кристалле и ряд не основных.

К основным несовершенствам относится:

1) Точечные дефекты. Они включают в себя пустые узлы в решетке (вакансии), междоузельные лишние атомы, примесные дефекты (примеси замещения и примесь внедрения).

2) Линейные дефекты. (дислокации).

3) Плоскостные дефекты. Они включают в себя: поверхности всевозможные других включений, трещины, наружная поверхность.

4) Объемные дефекты. Включают в себя сами включения, чужеродные примеси.

К не основным несовершенствам относится:

1) Электроны и дырки – электронные дефекты.

2) Фононы, фотоны и другие квазичастицы, которые существуют в кристалле ограниченное время

Электроны и дырки

Фактически они не оказывали влияние на энергетический спектр кристалла в невозбужденном состоянии. Однако, в реальных условиях, при T¹0 (абсолютная температура), электроны и дырки могут быть возбужденные в самой решетке, с одной стороны, а с другой стороны могут инжектироваться (вводится) в нее из вне. Такие электроны и дырки могут приводить с одной стороны к деформации самой решетки, а с другой стороны, за счет взаимодействия с другими дефектами, нарушать энергетический спектр кристалла.

Фотоны

Их нельзя рассматривать как истинное несовершенство. Хотя фотоны и обладают определенной энергией и импульсом, но если эта энергии не достаточно для генерации электронно – дырочных пар, то в этом случае кристалл будет прозрачен для фотона, то есть он без взаимодействия с материалом будет свободно проходить через него. Его включают в классификацию потому, что они могут оказывать влияние на энергетический спектр кристалла за счет взаимодействия с другими несовершенствами, в частности с электронами и дырками.

Точечные несовершенства (дефект)

При T¹0 может оказаться, что энергия частиц в узлах кристаллической решетки окажется достаточной для перевода частицы из узла в междоузлие. При чем каждой определенной температуре будет соответствовать свой определенная концентрация таких точечных дефектов. Часть дефектов будет образовываться за счет перевода частиц из узлов в междоузлие, а часть из них будет рекомбинировать (уменьшение концентрации) за счет перехода из междоузлий в узлы. За счет равенства потоков для каждой температуры будет соответствовать своя концентрация точечных дефектов. Такой дефект, который представляет собой совокупность междоузельного атома и оставшегося свободного узла), кансии) есть дефект по Френкелю. Частица из приповерхностного слоя, за счет температуры, может выйти на поверхность), поверхность является бесконечным стоком этих частиц). Тогда в приповерхностном слое образуется один свободный узел (вакансия). Этот свободный узел может быть занят более глубоко лежащим атомом, что эквивалентно перемещению вакансий в глубь кристалла. Такие дефекты называют дефектами по Шотки. Можно представить себе следующий механизм образования дефектов. Частица с поверхности перемещается в глубь кристалла и в толще кристалла появляется лишние междоузельные атомы без вакансий. Такие дефекты называют антишоткиевские дефекты.

Образование точечных дефектов

Существует три основных механизма образования точечных дефектов в кристалле.

Закалка. Кристалл нагревают до значительной температуры (повышенной), при этом каждой температуре соответствует вполне определенная концентрация точечных дефектов (равновесная концентрация). При каждой температуре устанавливается равновесная концентрация точечных дефектов. Чем больше температура, тем больше концентрация точечных дефектов. Если таким образом нагретый материал резко охладить, то в этом случае эта избыточная точечных дефектов окажется замороженной, не соответствующей этой низкой температуре. Таким образом, получают избыточную, по отношению к равновесной концентрации точечных дефектов.

Воздействие на кристалл внешними силами (полями). В этом случае к кристаллу подводится энергия, достаточная для образования точечных дефектов.

Облучение кристалла частицами высоких энергий. За счет внешнего облучения в кристалле возможны три основных эффекта:

1) Упругое взаимодействие частиц с решеткой.

2) Не упругое взаимодействие (ионизация электронов в решетке) частиц с решеткой.

3) Все возможные ядерные транс мутации (превращения).

Во 2-м и 3-м эффектах всегда присутствует и первый эффект. Эти упругие взаимодействия сказываются двояко: с одной стороны проявляются в виде упругих колебаний решетки, к образованию структурных дефектов, с другой стороны. При этом энергия падающего излучения должна превосходить пороговую энергию образования структурных дефектов. Эта пороговая энергия обычно в 2 –3 раза превосходит энергию, необходимую для образования такого структурного дефекта в адиабатических условиях. В адиабатических условиях для кремния (Si) энергия адиабатического образования составляет 10 эВ, пороговая энергия = 25 эВ. Для образования вакансии в кремнии, необходимо чтобы энергия внешнего излучения как минимум была больше 25 Эв, а не 10 эВ как для адиабатного процесса. Возможен вариант, что при значительных энергиях падающего излучения одна частица (1 квант) приводит к образованию не одного, а нескольких дефектов. Процесс может носить каскадный характер.

Концентрация точечных дефектов

Найдем концентрацию дефектов по Френкелю.

Предположим, что в узлах кристаллической решетки расположено N частиц. Из них n частиц перешли из узлов в междоузлие. Пусть энергия образования дефектов по Френелю будет Eф. Тогда вероятность того, что еще одна частица перейдет из узла в междоузлие будет пропорциональна числу сидящих еще в узлах частиц (N-n), и больцмановскому множителю, то есть ~. А общее число частиц перешедших из узлов в междоузлие ~. Найдем число частиц переходящих из междоузлий в узлы (рекомбинирует). Это число пропорционально n, и пропорционально числу свободных мест в узлах, а точнее вероятности того, что частица наткнется на пустой узел, (то есть ~). ~. Тогда суммарное изменение числа частиц будет равна разности этих величин:

С течением времени потоки частиц из узлов в междоузлия и в обратном направлении станут, равны друг другу то есть, устанавливается стационарное состояние. Так как число частиц в междоузлиях много меньше общего числа узлов, то n можно пренебречь и. Отсюда найдем

– концентрация дефектов по Френкелю, где a и b – неизвестные коэффициенты. Используя статистический подход, к концентрации дефектов по Френкелю и учтя, что N’ – число междоузлий, мы можем найти концентрацию дефектов по Френкелю: , где N – число частиц, N’ – число междоузлий.

Процесс образования дефектов по Френкелю является бимолекулярным процессом (2-х частичный процесс). В то же время процесс образования дефектов по Шотки, является мономолекулярным процессом.

Дефект по Шотки представляет одну вакансию. Проведя аналогичные рассуждения, как и для концентрации дефектов по Френкелю, получим концентрацию дефектов по Шотки в следующем виде: , где nш – концентрация дефектов по Шотки, Eш – энергия образования дефектов по Шотки. Так как процесс образования по Шотки является мономолекулярным, то в отличие от дефектов по Френкелю, в знаменателе показателя экспоненты отсутствует 2. Процесс образования, например дефектов по Френкелю, характерно для атомных кристаллов. Для ионных кристаллов дефекты, например по Шотки, могут образовываться лишь парами. Это происходит потому, что для сохранения электронейтральности ионного кристалла необходимо, чтобы на поверхность выходили одновременно пары ионов противоположного знака. То есть концентрация таких парных дефектов может быть представлена в виде бимолекулярного процесса: . Теперь можно найти отношение концентраций дефектов по Френкелю к концентрации дефектов по Шотки: ~. Энергия образования парных дефектов по Шотки Eр и энергия образования дефектов по Френкелю Eф имеют величину порядка 1 эВ и могут отличаться друг от друга порядка нескольких десятых эВ. KT для комнатных температур имеет значение порядка 0,03 эВ. Тогда ~. Отсюда следует, что для конкретного кристалла будет преобладать один конкретный тип точечных дефектов.

Скорость перемещения дефектов по кристаллу

Диффузия – есть процесс перемещения частиц в кристаллической решетке на макроскопические расстояния вследствие флуктуации (изменения) тепловой энергии. Если перемещающиеся частицы являются частицы самой решетки, то речь идет о самодиффузии. Если в перемещении участвуют частицы, являющиеся чужеродными, то речь идет о гетеродиффузии. Перемещение этих частиц в решетке может осуществлятся несколькими механизмами:

За счет движения междоузельных атомов.

За счет движения вакансий.

За счет взаимного обмена мест междоузельных атомов и вакансий.

Диффузия за счет движения междоузельных атомов

Фактически носит двухступенчатый характер:

Междоузельный атом должен образоваться в решетке.

Междоузельный атом должен перемещаться в решетке.


Положением в междоузлиях соответствует минимум потенциальной энергии

Пример: имеем пространственную решетку. Частица в междоузлии.

Для того, чтобы частица перешла из одного междоузлия в соседнее, она должна преодолеть потенциальный барьер высотой Em. Частота перескоков частиц из одного междоузлия в другое будет пропорциональна. Пусть частота колебания частиц, соответствует междоузлию v. Число соседних междоузлий равно Z. Тогда частота перескоков: .

Диффузия за счет движений вакансий

Процесс диффузии за счет вакансий также является 2-х ступенчатым. С одной стороны, вакансии должны образовываться, с другой стороны, она должна перемещаться. Следует отметить, что свободное место (свободный узел), куда может переместиться частица, существует также лишь определенную долю времени пропорционально, где Ev – энергия образования вакансий. А частота перескоков будет иметь вид: , где Em – энергия движения вакансий, Q=Ev+Em – энергия активации диффузии.

Перемещение частиц на большие расстояния

Рассмотрим цепочку одинаковых атомов.

Предположим, что имеем цепочку одинаковых атомов. Они расположены на расстоянии d друг от друга. Частицы могут смещаться влево или в право. Среднее смещение частиц равно 0. В силу равновероятности перемещения частиц в обоих направлениях:

Найдем среднеквадратичное смещение:


где n – число переходов частиц, может быть выражено. Тогда. Величина определяется параметрами данного материала. Поэтому обозначим: – коэффициент диффузии, в итоге:

В 3-х мерном случае:

Подставим сюда значение q, получим:

Где D0 – частотный фактор диффузии, Q – энергия активации диффузии.


Макроскопическая диффузия


Рассмотрим простую кубическую решетку:

Мысленно между плоскостями 1 и 2 условно выделим плоскость 3. и найдем число частиц, пересекающих эту полуплоскость слева на право и справа на лево. Пусть частота перескоков частиц равна q. Тогда за время, равное, полуплоскость 3 пересечет со стороны полуплоскости 1 частиц. Аналогично, за это же время выделенную полуплоскость со стороны полуплоскости 2 пересечет частиц. Тогда за время t изменение числа частиц в выделенной полуплоскости можно представить в следующем виде: . Найдем концентрацию частиц – примесей в полуплоскостях 1 и 2:

Разность объемных концентраций C1 и C2 можно выразить в виде:


Рассмотрим единичный выделенный слой (L2=1). Мы знаем, что – коэффициент диффузии, тогда:

– 1-й закон диффузии Фика.

Аналогично формула для 3-х мерного случая. Только в место одномерного коэффициента диффузии, подставляем коэффициент диффузии для 3-х мерного случая. Используя такую аналогию рассуждения для концентрации, а не для числа носителей, как в предыдущем случае, можно найти 2-й диффузии Фика.

– 2-й закон Фика.

2-й закон диффузии Фика очень удобен для расчетов, для практических приложений. В частности для коэффициента диффузии различных материалов. Например, имеем какой-то материал, на поверхность которого нанесена примесь, поверхностная концентрация которой равна Q см-2. Нагревая данный материал, осуществляют диффузию этой примеси в ее объем. В этом случае, в зависимости от времени устанавливается определенное распределение примеси, по толще материала для данной температуры. Аналитически распределение концентрации примеси, можно получить, решая уравнение диффузии Фика в следующем виде:


Графически это:


На этом принципе можно экспериментально найти параметры диффузии.

Экспериментальные методы исследования диффузии

Активационный метод

На поверхность материала наносят радиоактивную примесь, далее осуществляют диффузию этой примеси в материал. Затем послойно удаляют часть материала и исследуют активность, или оставшегося материала, или стравленного слоя. И таким образом находят распределение концентрации C по поверхности X(C(x)). Затем, используя полученное экспериментальное значение и последнею формулу, вычисляют коэффициент диффузии.

Химические методы

Они основаны на том, что при диффузии примеси, в результате ее взаимодействия с основным материалом образуется новые химические соединения с отличными от основных свойств решетки.

Методы p-n перехода

За счет диффузии примеси в полупроводниках на какой-то глубине полупроводника образуется область, в которой меняется тип его проводимости. Далее определяют глубину залегания p-n перехода и по ней судят о концентрации примесей на этой глубине. И далее делают по аналогии с 1-ым и 2-ым случаем.


Список использованных источников

1. Киттель Ч. Введение в физику твердого тела./ Пер. с англ.; Под ред. А. А. Гусева. – М.: Наука, 1978.

2. Епифанов Г.И. Физика твердого тела: Учеб. пособие для втузов. – М.: Высш. школ, 1977.

3. Жданов Г.С., Хунджуа Ф.Г., Лекции по физике твердого тела – М: Изд-во МГУ, 1988.

4. Бушманов Б. Н., Хромов Ю. А. Физика твердого тела: Учеб. пособие для втузов. – М.: Высш. школ, 1971.

5. Кацнельсон А.А. Введение в физику твердого тела – М: Изд-во МГУ, 1984.

Дефекты в кристаллах Всякий реальный кристалл не имеет совершенной структуры и обладает рядом нарушений идеальной пространственной решетки, которые называются дефектами в кристаллах. Дефекты в кристаллах подразделяют на нульмерные, одном

Дефекты кристаллического строенияРеальные металлы, которые используют в качестве конструкционных
материалов, состоят из большого числа кристаллов неправильной формы. Эти
кристаллы
называют
зернами
или
кристаллами,
а
строение
поликристаллическим или зернистым. Существующие технологии производства
металлов не позволяют получить их идеальной химической чистоты, поэтому
реальные металлы содержат примесные атомы. Примесные атомы являются
одним из главных источников дефектов кристаллического строения. В
зависимости от химической чистоты металлы делят на три группы:
химически чистые - содержание 99,9%;
высокочистые - содержание 99,99%;
сверхчистые - содержание 99,999%.
Атомы любых примесей по своим размерам и по своему строению резко
отличаются от атомов основного компонента, поэтому силовое поле вокруг
таких атомов искажено. Вокруг любых дефектов возникает зона упругого
искажения кристаллической решетки, которая уравновешивается объемом
кристалла, примыкающим к дефекту кристаллической структуры.

Локальные несовершенства (дефекты) в строении кристаллов
присущи всем металлам. Эти нарушения идеальной структуры твердых тел
оказывают существенное влияние на их физические, химические,
технологические и эксплуатационные свойства. Без использования
представлений о дефектах реальных кристаллов невозможно изучить явления
пластической деформации, упрочнение и разрушение сплавов и др. Дефекты
кристаллического строения удобно классифицировать по их геометрической
форме и размерам:
поверхностные (двумерные) малы только в одном направлении и имеют
плоскую форму - это границы зерен, блоков и двойников, границы доменов;
точечные (нульмерные) малы во всех трех измерениях, их размеры не
больше нескольких атомных диаметров - это вакансии, межузельные атомы,
примесные атомы;
линейные (одномерные) малы в двух направлениях, а в третьем
направлении они соизмеримы с длиной кристалла - это дислокации, цепочки
вакансий и межузельных атомов;
объемные (трехмерные) имеют во всех трех измерениях относительно
большие размеры - это крупные неоднородности, поры, трещины и т.д.;

Поверхностные дефекты представляют собой поверхности раздела
между отдельными зернами или субзернами в поликристаллическом металле, к
ним также относятся дефекты «упаковки» в кристаллах.
Граница зерен - это поверхность, по обе стороны от которой
кристаллические решетки различаются пространственной ориентацией. Эта
поверхность является двумерным дефектом, имеющим значительные размеры в
двух измерениях, а в третьем - его размер соизмерим с атомным. Границы зерен
- это области высокой дислокационной плотности и несогласованности
строения граничащих кристаллов. Атомы на границе зерен имеют повышенную
энергию по сравнению с атомами внутри зерен и, как следствие этого, более
склонны вступать в различные взаимодействия и реакции. На границах зерен
отсутствует упорядоченное расположение атомов.

На границах зерен в процессе кристаллизации металла скапливаются
различные примеси, образуются дефекты, неметаллические включения,
оксидные пленки. В результате металлическая связь между зернами нарушается
и прочность металла снижается. В результате нарушенного строения границы
ослабляют или упрочняют металл, что приводит соответственно к
межкристаллитному (межзеренному) или транскристаллитному (по телу зерна)
разрушению. Под действием высоких температур металл стремится уменьшить
поверхностную энергию границ зерен за счет роста зерен и сокращения
протяженности их границ. При химическом воздействии границы зерен
оказываются более активными и вследствие этого коррозионное разрушение
начинается по границам зерен (эта особенность лежит в основе микроанализа
металлов при изготовлении шлифов).
Есть еще один источник поверхностного искажения кристаллического
строения металла. Зерна металла взаимно разориентированы на несколько
градусов, фрагменты разориентированы на минуты, а блоки, составляющие
фрагмент, взаимно разориентированы всего лишь на несколько секунд. Если
рассмотреть зерно при большом увеличении, то окажется, что внутри его
имеются участки разориентированные друг относительно друга на угол 15"...30".
Такая структура называется блочной или мозаичной, а области - блоками
мозаики. Свойства металлов будут зависеть как от размеров блоков и зерен, так
и от их взаимной ориентации.

Ориентированные блоки объединяются в более крупные фрагменты в
которых общая ориентация остается произвольной, таким образом, все зерна
разоорентированны относительно друг друга. С повышением температуры
разооринтация зерен растет. Термический процесс, вызывающий деление зерна
на фрагменты называется - полигонизацией.
Различие свойства в зависимости от направления в металлах носит
название – анизотропии. Анизотропия характерна для всех веществ с
кристаллическим строением. В объеме зерна расположены произвольно поэтому
в разных направлениях находится примерно одинаковое количество атомов и
свойства остаются одинаковыми это явление называется – квазианизотропией
(ложная – анизотропия).

Точечные дефекты малы в трех измерениях и размерами
приближаются к точке. Одним из распространенных дефектов является
вакансии, т. е. место не занятое атомом (дефект Шоттки). На место вакантного
узла может перемещаться новый атом, а вакантное место -”дырка” образуется по
соседству. С повышением температуры концентрация вакансий возрастает. так
как атомы. расположенные вблизи поверхности. могут выйти на поверхность
кристалла. а их место займут атомы. находящиеся дальше от поверхности.
Наличие вакансий в решетке сообщает атомам подвижность. т.е. позволяет им
перемещаться в процессе самодиффузии и диффузии. и тем самым оказывает
влияние на такие процессы как старение, выделение вторичных фаз и т.п.
Другими точечными дефектами являются дислоцированные атомы
(дефект Френкеля), т.е. атомы собственного металла, вышедшие из узла
решетки и занявшие место где-то в междоузлии. При этом на месте
переместившегося атома образуется вакансия. Концентрация таких дефектов
невелика. т.к. для их образования требуется существенная затрата энергии.

В любом металле присутствуют чужеродные атомы примесей. В
зависимости от природы примесей и условий попадания их в металл они могут
быть растворены в металле или находиться в виде отдельных включений. На
свойства металла наибольшее влияние оказывают чужеродные растворенные
примеси, атомы которых могут располагаться в пустотах между атомами
основного металла - атомы внедрения или в узлах кристаллической решетки
основного металла - атомы замещения. Если атомы примесей значительно
меньше атомов основного металла, то они образуют растворы внедрения, а если
больше - то образуют растворы замещения. В обоих случаях решетка становится
дефектной и искажения ее влияют на свойства металла.

Линейные дефекты малы в двух измерениях, в третьем они могут
достигать длины кристалла (зерна). К линейным дефектам относятся цепочки
вакансий. межузельных атомов и дислокации. Дислокации являются особым
видом несовершенств в кристаллической решетке. С позиции теории дислокаций
рассматриваются прочность, фазовые и структурные превращения. Дислокацией
называется линейное несовершенство, образующее внутри кристалла зону
сдвига. Теория дислокаций была впервые применена в середине тридцатых годов
ХХ века физиками Орованом, Поляни и Тейлором для описания процесса
пластической деформации кристаллических тел. Ее использование позволило
объяснить природу прочности и пластичности металлов. Теория дислокаций дала
возможность объяснить огромную разницу между теоретической и практической
прочностью металлов.
К основным видам дислокаций относятся краевые и винтовые. Краевая
дислокация образуется, если внутри кристалла появляется лишняя
полуплоскость атомов, которая называется экстраплоскостью. Ее край 1-1
создает линейный дефект решетки, который называется краевой дислокацией.
Условно принято, что дислокация положительная, если она находится в верхней
части кристалла и обозначается знаком ” ”, если дислокация находится в нижней
части - отрицательная “T“. Дислокации одного и того же знака отталкиваются, а
противоположного - притягиваются. Под воздействием напряжения краевая
дислокация может перемещаться по кристаллу (по плоскости сдвига), пока не
достигнет границы зерна (блока). При этом образуется ступенька величиной в
одно межатомное расстояние.

Пластический сдвиг является следствием
постепенного перемещения дислокаций в плоскости
сдвига. Распространение скольжения по плоскости
скольжения происходит последовательно. Каждый
элементарный акт перемещения дислокации из
одного положения в другое совершается путем
разрыва лишь одной вертикальной атомной
плоскости. Для перемещения дислокаций требуется
значительно меньшее усилие, чем для жесткого
смещения одной части кристалла относительно другой в плоскости сдвига. При
движении дислокации вдоль направления сдвига через весь кристалл
происходит смещение верхней и нижней его частей лишь на одно межатомное
расстояние. В результате перемещения дислокация выходит на поверхность
кристалла и исчезает. На поверхности остается ступенька скольжения.

Винтовая дислокация. Образуется неполным сдвигом кристалла по
плотности Q. В отличие от краевой дислокации винтовая дислокация
параллельна вектору сдвига.
Дислокации образуются в процессе кристаллизации металлов при
”захлопывании” группы вакансий, а также в процессе пластической деформации
и фазовых превращений. Важной характеристикой дислокационной структуры
являются плотность дислокаций. Под плотностью дислокаций понимают
суммарную длину дислокаций l (см.), приходящуюся на единицу объема V
кристалла (см3). Таким образом. размерность плотности дислокаций, см-2. У
отожженных металлов - 106...108 см-2. При холодном пластическом
деформировании плотность дислокаций возрастает до 1011...1012 см-2. Более
высокая плотность дислокаций приводит к появлению микротрещин и
разрушению металла.
Вблизи линии дислокации атомы смещены со
своих мест и кристаллическая решетка искажена, что
вызывает образование поля напряжений (выше линии
дислокации решетка сжата, а ниже растянута).
Величина единичного смещения плоскостей
характеризуется вектором Бюргере b, который
отражает как абсолютную величину сдвига, так и его
направление.

Смешанная дислокация. Дислокация не может закончиться внутри
кристалла, не соединяясь с другой дислокацией. Это следует из того, что
дислокация является границей зоны сдвига, а зона сдвига всегда есть
замкнутая линия, причем часть этой линии может проходить по внешней
поверхности кристалла. Следовательно, линия дислокации должна замыкаться
внутри кристалла или оканчиваться на его поверхности.
Когда граница зоны сдвига (линия дислокации авcdf) образована
прямыми участками, параллельными и перпендикулярными вектору сдвига, и
более общий случай криволинейной линии дислокации gh. На участках ав, cd и
ef дислокация краевая, на участках вс и de – дислокация винтовая. Отдельные
участки криволинейной линии дислокации имеют краевую или винтовую
ориентацию, но часть этой кривой не перпендикулярна и не параллельна
вектору сдвига, и на этих участках имеет место дислокация смешанной
ориентации.

Пластическая деформация кристаллических тел связана с количеством
дислокаций, их шириной, подвижностью, степенью взаимодействия с дефектами
решетки и т. д. Характер связи между атомами влияет на пластичность
кристаллов. Так, в неметаллах с их жесткими направленными связями
дислокации очень узкие, они требуют больших напряжений для старта - в 103
раз больших, чем для металлов. В результате хрупкое разрушение в неметаллах
наступает раньше, чем сдвиг.
Основной причиной низкой прочности реальных металлов является
наличие в структуре материала дислокаций и других несовершенств
кристаллического строения. Получение бездислокационных кристаллов
приводит к резкому повышению прочности материалов.
Левая ветвь кривой соответствует созданию
совершенных
бездислокационных
нитевидных
кристаллов (так называемых «усов»), прочность
которых близка к теоретической. При ограниченной
плотности дислокаций и других искажений
кристаллической
решетки
процесс
сдвига
происходит тем легче, чем больше дислокаций
находится в объеме металла.

Одной из характеристик дислокации является вектор смещения - вектор
Бюргерса. Вектор Бюргерса – это дополнительный вектор, который нужно
ввести в контур, описанный вокруг дислокации, чтобы замкнуть
соответствующий ему контур в решетке идеального кристалла, разомкнувшийся
из-за наличия дислокации. Контур проведенный по решетке вокруг участка, в
котором есть дислокация, окажется незамкнутым (контур Бюргерса). Разрыв
контура характеризует сумму всех упругих смещений решетки, накопившихся в
области вокруг дислокации – вектор Бюргерса.
У краевой дислокации вектор Бюргерса перпендикулярен, а у винтовой
дислокации – параллелен линии дислокации. Вектор Бюргерса является мерой
искаженности кристаллической решетки, обусловленной присутствием в ней
дислокации. Если дислокация вводится в кристалл чистым сдвигом, то вектор
сдвига и является вектором Бюргерса. Контур Бюргерса может быть смещен
вдоль линии дислокации, растянут или сжат в направлении, перпендикулярном
линии дислокации, при этом величина и направление вектора Бюргерса
остаются постоянными.

С ростом напряжений возрастает число источников дислокаций в
металле и их плотность увеличивается. Помимо параллельных дислокаций
возникают дислокации в разных плоскостях и направлениях. Дислокации
воздействуют друг на друга, мешают друг другу перемешаться, происходит их
аннигиляция (взаимное уничтожение) и т. д. (что позволило Дж. Гордону образно
назвать их взаимодействие в процессе пластической деформации «интимной
жизнью дислокаций»). С повышением плотности дислокаций их движение
становится все более затрудненным, что требует увеличения прилагаемой
нагрузки для продолжения деформации. В результате металл упрочняется, что
соответствует правой ветви кривой.
Дислокации наряду с другими дефектами участвуют в фазовых
превращениях, рекристаллизации, служат готовыми центрами при выпадении
второй фазы из твердого раствора. Вдоль дислокаций скорость диффузии на
несколько порядков выше, чем через кристаллическую решетку без дефектов.
Дислокации служат местом концентрации примесных атомов, в особенности
примесей внедрения, так как это уменьшает искажения решетки.

Если под влиянием внешних усилий в металле возникают дислокации,
то упругие свойства металла изменяются и начинает сказываться влияние
знака первоначальной деформации. Если металл подвергнуть слабой
пластической деформации нагрузкой одного знака, то при перемене знака
нагрузки обнаруживается понижение сопротивления начальным пластическим
деформациям (эффект Баушингера).
Возникшие при первичной деформации дислокации обуславливают
появление в металле остаточных напряжений, которые складываясь с
рабочими напряжениями при перемене знака нагрузки, вызывают снижение
предела текучести. С увеличением начальных пластических деформаций
величина снижения механических характеристик увеличивается.
Эффект
Баушингера
явно
проявляется
при
незначительном
начальном
наклепе.
Низкий
отпуск
наклепанных
материалов
ликвидирует все проявления
эффекта Баушингера. Эффект
значительно ослабляется при
многократных
циклических
нагружениях
материала
с
наличием малых пластических
деформаций разного знака.

Все перечисленные дефекты кристаллического строения приводят к
появлению внутренних напряжений. По величине объема, где они
уравновешиваются различают напряжения I, II и III рода.
Внутренние напряжения I рода - это зональные напряжения,
возникающие между отдельными зонами сечения или между отдельными
частями детали. К ним относятся термические напряжения, которые появляются
при ускоренном нагреве и охлаждении при сварке, термической обработке.
Внутренние напряжения II рода - возникают внутри зерна или между
соседними зернами, обусловлены дислокационной структурой металла.
Внутренние напряжения III рода - возникают внутри объема порядка
нескольких элементарных ячеек; главным источником являются точечные
дефекты.
Внутренние остаточные напряжения являются опасными, так как
складываются с действующими рабочими напряжениями и могут привести к
преждевременному разрушению конструкции.

Читайте также: