Структура метод главных компонент. Метод главных компонент (мгк): основные формулы и процедуры. Для обработки многомерных статистических данных

В стремлении предельно точно описать исследуемую область аналитики часто отбирают большое число независимых переменных (p). В этом случае может возникнуть серьезная ошибка: несколько описывающих переменных могут характеризовать одну и ту же сторону зависимой переменной и, как следствие, высоко коррелировать между собой. Мультиколлинеарность независимых переменных серьезно искажает результаты исследования, поэтому от нее следует избавляться.

Метод главных компонент (как упрощенная модель факторного анализа, поскольку при этом методе не используются индивидуальные факторы, описывающие только одну переменную x i) позволяет объединить влияние высоко коррелированных переменных в один фактор, характеризующий зависимую переменную с одной единственной стороны. В результате анализа, осуществленного по методу главных компонент, мы добьемся сжатия информации до необходимых размеров, описания зависимой переменной m (m

Для начала необходимо решить, сколько факторов необходимо выделить в данном исследовании. В рамках метода главных компонент первый главный фактор описывает наибольших процент дисперсии независимых переменных, далее – по убывающей. Таким образом, каждая следующая главная компонента, выделенная последовательно, объясняет все меньшую долю изменчивости факторов x i . Задача исследователя состоит в том, чтобы определить, когда изменчивость становится действительно малой и случайной. Другими словами – сколько главных компонент необходимо выбрать для дальнейшего анализа.

Существует несколько методов рационального выделения необходимого числа факторов. Наиболее используемый из них – критерий Кайзера. Согласно этому критерию, отбираются только те факторы, собственные значения которых больше 1. Таким образом, фактор, который не объясняет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, опускается.



Проанализируем Таблицу 19, построенную в SPSS:

Таблица 19. Полная объясненная дисперсия

Компонента Начальные собственные значения Суммы квадратов нагрузок вращения
Итого % Дисперсии Кумулятивный % Итого % Дисперсии Кумулятивный %
dimension0 5,442 90,700 90,700 3,315 55,246 55,246
,457 7,616 98,316 2,304 38,396 93,641
,082 1,372 99,688 ,360 6,005 99,646
,009 ,153 99,841 ,011 ,176 99,823
,007 ,115 99,956 ,006 ,107 99,930
,003 ,044 100,000 ,004 ,070 100,000
Метод выделения: Анализ главных компонент.

Как видно из Таблицы 19, в данном исследовании переменные x i высоко коррелирут между собой (это также выявлено ранее и видно из Таблицы 5 «Парные коэффициенты корреляции»), а следовательно, характеризуют зависимую переменную Y практически с одной стороны: изначально первая главная компонента объясняет 90,7 % дисперсии x i , и только собственное значение, соответствующее первой главной компоненте, больше 1. Конечно, это является недостатком отбора данных, однако в процессе самого отбора этот недостаток не был очевиден.

Анализ в пакете SPSS позволяет самостоятельно выбрать число главных компонент. Выберем число 6 – равное количеству независимых переменных. Второй столбец Таблицы 19 показывает суммы квадратов нагрузок вращения, именно по этим результатам и сделаем вывод о числе факторов. Собственные значения, соответствующие первым двум главным компонентам, больше 1 (55,246% и 38,396% соответственно), поэтому, согласно методу Кайзера, выделим 2 наиболее значимые главные компоненты.

Второй метод выделения необходимого числа факторов – критерий «каменистой осыпи». Согласно этому методу, собственные значения представляются в виде простого графика, и выбирается такое место на графике, где убывание собственных значений слева направо максимально замедляется:

Рисунок 3. Критерий "каменистой осыпи"

Как видно на Рисунке 3, убывание собственных значений замедляется уже со второй компоненты, однако постоянная скорость убывания (очень маленькая) начинается лишь с третьей компоненты. Следовательно, для дальнейшего анализа будут отобраны первые две главные компоненты. Это умозаключение согласуется с выводом, полученным при использовании метода Кайзера. Таким образом, окончательно выбираются первые две последовательно полученные главные компоненты.

После выделения главных компонент, которые будут использоваться в дальнейшем анализе, необходимо определить корреляцию исходных переменных x i c полученными факторами и, исходя из этого, дать названия компонентам. Для анализа воспользуемся матрицей факторных нагрузок А, элементы которой являются коэффициентами корреляции факторов с исходными независимыми переменными:

Таблица 20. Матрица факторных нагрузок

Матрица компонент a
Компонента
X1 ,956 -,273 ,084 ,037 -,049 ,015
X2 ,986 -,138 ,035 -,080 ,006 ,013
X3 ,963 -,260 ,034 ,031 ,060 -,010
X4 ,977 ,203 ,052 -,009 -,023 -,040
X5 ,966 ,016 -,258 ,008 -,008 ,002
X6 ,861 ,504 ,060 ,018 ,016 ,023
Метод выделения: Анализ методом главных компонент.
a. Извлеченных компонент: 6

В данном случае интерпретация коэффициентов корреляции затруднена, следовательно, довольно сложно дать названия первым двум главным компонентам. Поэтому далее воспользуемся методом ортогонального поворота системы координат Варимакс, целью которого является поворот факторов так, чтобы выбрать простейшую для интерпретации факторную структуру:

Таблица 21. Коэффициенты интерпретации

Матрица повернутых компонент a
Компонента
X1 ,911 ,384 ,137 -,021 ,055 ,015
X2 ,841 ,498 ,190 ,097 ,000 ,007
X3 ,900 ,390 ,183 -,016 -,058 -,002
X4 ,622 ,761 ,174 ,022 ,009 ,060
X5 ,678 ,564 ,472 ,007 ,001 ,005
X6 ,348 ,927 ,139 ,001 -,004 -,016
Метод выделения: Анализ методом главных компонент. Метод вращения: Варимакс с нормализацией Кайзера.
a. Вращение сошлось за 4 итераций.

Из Таблицы 21 видно, что первая главная компонента больше всего связана с переменными x1, x2, x3; а вторая – с переменными x4, x5, x6. Таким образом, можно сделать вывод, что объем инвестиций в основные средства в регионе (переменная Y) зависит от двух факторов:

- объема собственных и заемных средств, поступивших в предприятия региона за период (первая компонента, z1);

- а также от интенсивности вложений предприятий региона в финансовые активы и количества иностранного капитала в регионе (вторая компонента, z2).

Рисунок 4. Диаграмма рассеивания

Данная диаграмма демонстрирует неутешительные результаты. Еще в самом начале исследования мы старались подобрать данные так, чтобы результирующая переменная Y была распределена нормально, и нам практически это удалось. Законы распределения независимых переменных были достаточно далеки от нормального, однако мы старались максимально приблизить их к нормальному закону (соответствующим образом подобрать данные). Рисунок 4 показывает, что первоначальная гипотеза о близости закона распределения независимых переменных к нормальному закону не подтверждается: форма облака должна напоминать эллипс, в центре объекты должны быть расположены более густо, нежели чем по краям. Стоит заметить, что сделать многомерную выборку, в которой все переменные распределены по нормальному закону – задача, выполнимая с огромным трудом (более того, не всегда имеющая решение). Однако к этой цели нужно стремиться: тогда результаты анализа будут более значимыми и понятными при интерпретации. К сожалению, в нашем случае, когда проделана большая часть работы по анализу собранных данных, менять выборку достаточно затруднительно. Но далее, в последующих работах, стоит более серьезно подходить в выборке независимых переменных и максимально приближать закон их распределения к нормальному.

Последним этапом анализа методом главных компонент является построение уравнения регрессии на главные компоненты (в данном случае – на первую и вторую главные компоненты).

При помощи SPSS рассчитаем параметры регрессионной модели:

Таблица 22. Параметры уравнения регресии на главные компоненты

Модель Нестандартизованные коэффициенты Стандартизованные коэффициенты t Знч.
B Стд. Ошибка Бета
(Константа) 47414,184 1354,505 35,005 ,001
Z1 26940,937 1366,763 ,916 19,711 ,001
Z2 6267,159 1366,763 ,213 4,585 ,001

Уравнение регрессии примет вид:

y=47 414,184 + 0,916*z1+0,213*z2,

(b0) (b1) (b2)

т. о. b0 =47 414,184 показывает точку пересечения прямой регрессии с осью результирующего показателя;

b1= 0,916 – при увеличении значения фактора z1 на 1 ожидаемое среднее значение суммы объема инвестиций в основные средства увеличится на 0,916;

b2= 0,213 – при увеличении значения фактора z2 на 1 ожидаемое среднее значение суммы объема инвестиций в основные средства увеличится на 0,213.

В данном случае значение tкр («альфа»=0,001, «ню»=53) = 3,46 меньше tнабл для всех коэффициентов «бета». Следовательно, все коэффициенты значимы.

Таблица 24. Качество регрессионной модели на главные компоненты

Модель R R-квадрат Скорректированный R-квадрат Стд. ошибка оценки
dimension0 ,941 a ,885 ,881 10136,18468
a. Предикторы: (конст) Z1, Z2
b. Зависимая переменная: Y

В Таблице 24 отражены показатели, которые характеризуют качество построенной модели, а именно: R – множественный к-т корреляции – говорит о том, какая доля дисперсии Y объясняется вариацией Z; R^2 – к-т детерминации – показывает долю объяснённой дисперсии отклонений Y от её среднего значения. Стандартная ошибка оценки характеризует ошибку построенной модели. Сравним эти показатели с аналогичными показателями степенной регрессионной модели (ее качество оказалось выше качества линейной модели, поэтому сравниваем именно со степенной):

Таблица 25. Качество степенной регрессионной модели

Так, множественный к-т корреляции R и к-т детерминации R^2 в степенной модели несколько выше, чем в модели главных компонент. Кроме того, стандартная ошибка модели главных компонент НАМНОГО выше, чем в степенной модели. Поэтому качество степенной регрессионной модели выше, чем регрессионной модели, построенной на главных компонентах.

Проведем верификацию регрессионной модели главных компонент, т. е. проанализируем ее значимость. Проверим гипотезу о незначимости модели, рассчитаем F(набл.) = 204,784 (рассчитано в SPSS), F(крит) (0,001; 2; 53)=7,76. F(набл)>F(крит), следовательно, гипотеза о незначимости модели отвергается. Модель значима.

Итак, в результате проведения компонентного анализа, было выяснено, что из отобранных независимых переменных x i можно выделить 2 главные компоненты – z1 и z2, причем на z1 в большей степени влияют переменные x1, x2, x3, а на z2 – x4, x5, x6. Уравнение регрессии, построенное на главных компонентах, оказалось значимым, хотя и уступает по качеству степенному уравнению регрессии. Согласно уравнению регрессии на главные компоненты, Y положительно зависит как от Z1, так и от Z2. Однако изначальная мультиколлинеарность переменных xi и то, что они не распределены по нормальному закону распределения, может искажать результаты построенной модели и делать ее менее значимой.

Кластерный анализ

Следующим этапом данного исследования является кластерный анализ. Задачей кластерного анализа является разбиение выбранных регионов (n=56) на сравнительно небольшое число групп (кластеров) на основе их естественной близости относительно значений переменных x i . При проведении кластерного анализа мы предполагаем, что геометрическая близость двух или нескольких точек в пространстве означает физическую близость соответствующих объектов, их однородность (в нашем случае - однородность регионов по показателям, влияющим на инвестиции в основные средства).

На первой стадии кластерного анализа необходимо определиться с оптимальным числом выделяемых кластеров. Для этого необходимо провести иерархическую кластеризацию – последовательное объединение объектов в кластеры до тех пор, пока не останется два больших кластера, объединяющиеся в один на максимальном расстоянии друг от друга. Результат иерархического анализа (вывод об оптимальном количестве кластеров) зависит от способа расчета расстояния между кластерами. Таким образом, протестируем различные методы и сделаем соответствующие выводы.

Метод «ближнего соседа»

Если расстояние между отдельными объектами мы рассчитываем единым способом – как простое евклидово расстояние – расстояние между кластерами вычисляется разными методами. Согласно методу «ближайшего соседа», расстояние между кластерами соответствует минимальному расстоянию между двумя объектами разных кластеров.

Анализ в пакете SPSS проходит следующим образом. Сначала рассчитывается матрица расстояний между всеми объектами, а затем, на основе матрицы расстояний, объекты последовательно объединяются в кластеры (для каждого шага матрица составляется заново). Шаги последовательного объединения представлены в таблице:

Таблица 26. Шаги агломерации. Метод «ближайшего соседа»

Этап Кластер объединен с Коэффициенты Следующий этап
Кластер 1 Кластер 2 Кластер 1 Кластер 2
,003
,004
,004
,005
,005
,005
,005
,006
,007
,007
,009
,010
,010
,010
,010
,011
,012
,012
,012
,012
,012
,013
,014
,014
,014
,014
,015
,015
,016
,017
,018
,018
,019
,019
,020
,021
,021
,022
,024
,025
,027
,030
,033
,034
,042
,052
,074
,101
,103
,126
,163
,198
,208
,583
1,072

Как видно из Таблицы 26, на первом этапе объединились элементы 7 и 8, т. к. расстояние между ними было минимальным – 0,003. Далее расстояние между объединенными объектами увеличивается. По таблице также можно сделать вывод об оптимальном числе кластеров. Для этого нужно посмотреть, после какого шага происходит резкий скачок в величине расстояния, и вычесть номер этой агломерации из числа исследуемых объектов. В нашем случае: (56-53)=3 – оптимальное число кластеров.

Рисунок 5. Дендрограмма. Метод "ближайшего соседа"

Аналогичный вывод об оптимальном количестве кластеров можно сделать и глядя на дендрограмму (Рис. 5): следует выделить 3 кластера, причем в первый кластер войдут объекты под номерами 1-54 (всего 54 объекта), а во второй и третий кластеры – по одному объекту (под номерами 55 и 56 соответственно). Данный результат говорит о том, что первые 54 региона относительно однородны по показателям, влияющим на инвестиции в основные средства, в то время как объекты под номерами 55 (Республика Дагестан) и 56 (Новосибирская область) значительно выделяются на общем фоне. Стоит заметить, что данные субъекты имеют самые большие объемы инвестиций в основные средства среди всех отобранных регионов. Этот факт еще раз доказывает высокую зависимость результирующей переменной (объема инвестиций) от выбранных независимых переменных.

Аналогичные рассуждения проводятся для других методов расчета расстояния между кластерами.

Метод «дальнего соседа»

Таблица 27. Шаги агломерации. Метод "дальнего соседа"

Этап Кластер объединен с Коэффициенты Этап первого появления кластера Следующий этап
Кластер 1 Кластер 2 Кластер 1 Кластер 2
,003
,004
,004
,005
,005
,005
,005
,007
,009
,010
,010
,011
,011
,012
,012
,014
,014
,014
,017
,017
,018
,018
,019
,021
,022
,026
,026
,027
,034
,035
,035
,037
,037
,042
,044
,046
,063
,077
,082
,101
,105
,117
,126
,134
,142
,187
,265
,269
,275
,439
,504
,794
,902
1,673
2,449

При методе «дальнего соседа» расстояние между кластерами рассчитывается как максимальное расстояние между двумя объектами в двух разных кластерах. Согласно Таблице 27, оптимальное число кластеров равно (56-53)=3.

Рисунок 6. Дендрограмма. Метод "дальнего соседа"

Согласно дендрограмме, оптимальным решением также будет выделение 3 кластеров: в первый кластер войдут регионы под номерами 1-50 (50 регионов), во второй – под номерами 51-55 (5 регионов), в третий – последний регион под номером 56.

Метод «центра тяжести»

При методе «центра тяжести» за расстояние между кластерами принимается евклидово расстояние между «центрами тяжести» кластеров – средними арифметическими их показателей x i .

Рисунок 7. Дендрограмма. Метод "центра тяжести"

На Рисунке 7 видно, что оптимальное число кластеров следующее: 1 кластер – 1-47 объекты; 2 кластер – 48-54 объекты (всего 6); 3 кластер – 55 объект; 4 кластер – 56 объект.

Принцип «средней связи»

В данном случае расстояние между кластерами равно среднему значению расстояний между всеми возможными парами наблюдений, причем одно наблюдение берется из одного кластера, а второе – соответственно, из другого.

Анализ таблицы шагов агломерации показал, что оптимальное количество кластеров равно (56-52)=4. Сравним этот вывод с выводом, полученным при анализе дендрограммы. На Рисунке 8 видно, что в 1 кластер войдут объекты под номерами 1-50, во 2 кластер – объекты 51-54 (4 объекта), в 3 кластер – 55 регион, в 4 кластер – 56 регион.

Рисунок 8. Дендрограмма. Метод "средней связи"

Компонентный анализ относится к многомерным методам снижения размерности. Он содержит один метод - метод главных компонент. Главные компоненты представляют собой ортогональную систему координат, в которой дисперсии компонент характеризуют их статистические свойства.

Учитывая, что объекты исследования в экономике характеризуются большим, но конечным количеством признаков, влияние которых подвергается воздействию большого количества случайных причин.

Вычисление главных компонент

Первой главной компонентой Z1 исследуемой системы признаков Х1, Х2, Х3 , Х4 ,…, Хn называется такая центрировано - нормированная линейная комбинация этих признаков, которая среди прочих центрировано - нормированных линейных комбинаций этих признаков, имеет дисперсию наиболее изменчивую.

В качестве второй главной компоненты Z2 мы будем брать такую центрировано - нормированную комбинацию этих признаков, которая:

не коррелированна с первой главной компонентой,

не коррелированны с первой главной компонентой, эта комбинация имеет наибольшую дисперсию.

K-ой главной компонентой Zk (k=1…m) мы будем называть такую центрировано - нормированную комбинацию признаков, которая:

не коррелированна с к-1 предыдущими главными компонентами,

среди всех возможных комбинаций исходных признаков, которые не

не коррелированны с к-1 предыдущими главными компонентами, эта комбинация имеет наибольшую дисперсию.

Введём ортогональную матрицу U и перейдём от переменных Х к переменным Z, причём

Вектор выбирается т. о., чтобы дисперсия была максимальной. После получения выбирается т. о., чтобы дисперсия была максимальной при условии, что не коррелированно с и т. д.

Так как признаки измерены в несопоставимых величинах, то удобнее будет перейти к центрированно-нормированным величинам. Матрицу исходных центрированно-нормированных значений признаков найдем из соотношения:

где - несмещенная, состоятельная и эффективная оценка математического ожидания,

Несмещенная, состоятельная и эффективная оценка дисперсии.

Матрица наблюденных значений исходных признаков приведена в Приложении.

Центрирование и нормирование произведено с помощью программы"Stadia".

Так как признаки центрированы и нормированы, то оценку корреляционной матрицы можно произвести по формуле:


Перед тем как проводить компонентный анализ, проведем анализ независимости исходных признаков.

Проверка значимости матрицы парных корреляций с помощью критерия Уилкса.

Выдвигаем гипотезу:

Н0: незначима

Н1: значима

125,7; (0,05;3,3) = 7,8

т.к > , то гипотеза Н0 отвергается и матрица является значимой, следовательно, имеет смысл проводить компонентный анализ.

Проверим гипотезу о диагональности ковариационной матрицы

Выдвигаем гипотезу:

Строим статистику, распределена по закону с степенями свободы.

123,21, (0,05;10) =18,307

т.к >, то гипотеза Н0 отвергается и имеет смысл проводить компонентный анализ.

Для построения матрицы факторных нагрузок необходимо найти собственные числа матрицы, решив уравнение.

Используем для этой операции функцию eigenvals системы MathCAD, которая возвращает собственные числа матрицы:

Т.к. исходные данные представляют собой выборку из генеральной совокупности, то мы получили не собственные числа и собственные вектора матрицы, а их оценки. Нас будет интересовать на сколько “хорошо” со статистической точки зрения выборочные характеристики описывают соответствующие параметры для генеральной совокупности.

Доверительный интервал для i-го собственного числа ищется по формуле:

Доверительные интервалы для собственных чисел в итоге принимают вид:

Оценка значения нескольких собственных чисел попадает в доверительный интервал других собственных чисел. Необходимо проверить гипотезу о кратности собственных чисел.

Проверка кратности производится с помощью статистики

где r-количество кратных корней.

Данная статистика в случае справедливости распределена по закону с числом степеней свободы. Выдвинем гипотезы:

Так как, то гипотеза отвергается, то есть собственные числа и не кратны.

Так как, то гипотеза отвергается, то есть собственные числа и не кратны.

Необходимо выделить главные компоненты на уровне информативности 0,85. Мера информативности показывает какую часть или какую долю дисперсии исходных признаков составляют k-первых главных компонент. Мерой информативности будем называть величину:

На заданном уровне информативности выделено три главных компоненты.

Запишем матрицу =

Для получения нормализованного вектора перехода от исходных признаков к главным компонентам необходимо решить систему уравнений: , где - соответствующее собственное число. После получения решения системы необходимо затем нормировать полученный вектор.

Для решения данной задачи воспользуемся функцией eigenvec системы MathCAD, которая возвращает нормированный вектор для соответствующего собственного числа.

В нашем случае первых четырех главных компонент достаточно для достижения заданного уровня информативности, поэтому матрица U (матрица перехода от исходного базиса к базису из собственных векторов)

Строим матрицу U, столбцами которой являются собственные вектора:

Матрица весовых коэффициентов:

Коэффициенты матрицы А являются коэффициентами корреляции между центрировано - нормированными исходными признаками и ненормированными главными компонентами, и показывают наличие, силу и направление линейной связи между соответствующими исходными признаками и соответствующими главными компонентами.

При моделировании производственно-экономических процессов, чем ниже уровень рассматриваемой производственной подсистемы (структурного полразделения, исследуемого процесса), тем более характерна для входных параметров относительная независимость определяющих их факторов. При анализе основных качественных показателей работы предприятия (производительности труда, себестоимости продукции, прибыли и других показателей) приходится иметь дело с моделированием процессов со взаимосвязанной системой входных параметров (факторов). При этом процесс статистического моделирования систем характеризуется сильной коррелированностью, а в отдельных случаях почти линейной зависимостью определяющих факторов (входных параметров процесса). Это случай мультиколлинеарности, т.е. существенной взаимозависимости (коррелированности) входных параметров, модель регрессии здесь не отражает адекватно реального исследуемого процесса. Если использовать добавление или отбрасывание ряда факторов, увеличение или уменьшение объема исходной информации (количества наблюдений), то это существенно изменит модель исследуемого процесса. Применение такого подхода может резко изменить и величины коэффициентов регрессии, характеризующие влияние исследуемых факторов, и даже направление их влияния (знак при коэффициентах регрессии может измениться на противоположный при переходе от одной модели к другой).

Из опыта научных исследований известно, что большинство экономических процессов отличается высокой степенью взаимовлияния (интеркорреляции) параметров (изучаемых факторов). При расчетах регрессии моделируемых показателей по этим факторам возникают трудности в интерпретации значений коэффициентов в модели. Такая мультиколлинеарность параметров модели часто носит локальный характер, т. е. существенно связаны между собой не все исследуемые факторы, а отдельные группы входных параметров. Наиболее общий случай мультиколлинеарных систем характеризуется таким набором исследуемых факторов, часть из которых образует отдельные группы с сильно взаимосвязанной внутренней структурой и практически не связанных между собой, а часть представляет собой отдельные факторы, несформированные в блоки и несущественно связанные как между собой, так и с остальными факторами, входящими в группы с сильной интеркорреляцией.



Для моделирования такого типа процессов требуется решение проблемы о способе замены совокупности существенно взаимосвязанных факторов на какой-либо другой набор некоррелированных параметров, обладающий одним важным свойством: новый набор независимых параметров должен нести в себе всю необходимую информацию о вариации или дисперсии первоначального набора факторов исследуемого процесса. Эффективным средством решения такой задачи является использование метода главных компонент. При использовании этого метода возникает задача экономической интерпретации комбинаций исходных факторов, вошедших в наборы главных компонент. Метод позволяет уменьшить число входных параметров модели, что упрощает использование получаемых в результате регрессионных уравнений.

Сущность вычисления главных компонент заключается в определении корреляционной (ковариационной) матрицы для исходных факторов X j и нахождении характеристических чисел (собственных значений) матрицы и соответствующих векторов. Характеристические числа являются дисперсиями новых преобразованных переменных и для каждого характеристического числа соответствующий вектор дает вес, с которым старые переменные входят в новые. Главные компоненты – это линейные комбинации исходных статистических величин. Переход от исходных (наблюдаемых) факторов к векторам главных компонент осуществляется посредством поворота координатных осей.

Для регрессионного анализа используют, как правило, лишь несколько первых главных компонент, которые в сумме объясняют от 80 до 90 % всей исходной вариации факторов, остальные из них отбрасываются. В случае если все компоненты включены в регрессию, результат ее, выраженный через первоначальные переменные, будет идентичен множественному уравнению регрессии.

Алгоритм вычисления главных компонент

Допустим, имеется m векторов (исходных факторов) размерностью n (количество измерений), которые составляют матрицу Х:

Поскольку, как правило, основные факторы моделируемого процесса имеют разные единицы измерения (одни выражены в кг, другие – в км, третьи – в денежных единицах и т. д.), для их сопоставления, сравнения степени влияния, применяют операцию масштабирования и центрирования. Преобразованные входные факторы обозначим через y ij . В качестве масштабов выбираются чаще всего величины стандартных (среднеквадратических) отклонений:

где σ j – среднее квадратическое отклонение X j ; σ j 2 - дисперсия; - среднее значение исходных факторов в данной j-ой серии наблюдений

(Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания. Нормировать величину х – означает перейти к новой величине у, для которой средняя величина равна нулю, а дисперсия – единице).

Определим матрицу парных коэффициентов корреляции

где у ij – нормированное и центрированное значение x j –й случайной величины для i-го измерения; y ik – значение для k-й случайной величины.

Значение r jk характеризует степень разброса точек по отношению к линии регрессии.

Искомая матрица главных компонент F определяется из следующего соотношения (здесь используется транспонированная,- “повернутая на 90 0 ” – матрица величин y ij):

или используя векторную форму:

,

где F – матрица главных компонент, включающая совокупность n полученных значений для m главных компонент; элементы матрицы А являются весовыми коэффициентами, определяющими долю каждой главной компоненты в исходных факторах.

Элементы матрицы А находятся из следующего выражения

где u j – собственный вектор матрицы коэффициентов корреляции R; λ j – соответствующее собственное значение.

Число λ называется собственным значением (или характеристическим числом) квадратной матрицы R порядка m, если можно подобрать такой m-мерный ненулевой собственный вектор u, что Ru = λu.

Множество всех собственных значений матрицы R совпадает с множеством всех решений уравнения |R - λE| = 0. Если раскрыть определитель det |R - λE|, то получится характеристический многочлен матрицы R. Уравнение |R - λE| = 0 называется характеристическим уравнением матрицы R.

Пример определения собственных значений и собственных векторов. Дана матрица .

Ее характеристическое уравнение

Это уравнение имеет корни λ 1 =18, λ 2 =6, λ 3 =3. найдем собственный вектор (направление), соответствующее λ 3 . Подставляя λ 3 в систему, получим:

8u 1 – 6u 2 +2u 3 = 0

6u 1 + 7u 2 - 4u 3 = 0

2u 1 - 4u 2 + 3u 3 = 0

Т. к. определитель этой системы равен нулю, то согласно правилам линейной алгебры, можно отбросить последнее уравнение и решать полученную систему по отношению к произвольной переменной, например u 1 = с= 1

6 u 2 + 2u 3 = - 8c

7 u 2 – 4 u 3 = 6 c

Отсюда получим собственное направление (вектор) для λ 3 =3

1 таким же образом можно найти собственные вектора

Общий принцип, лежащий в основе процедуры нахождения главных компонент показан на рис. 29.



Рис. 29. Схема связи главных компонент с переменными

Весовые коэффициенты характеризуют степень влияния (и направленность) данного “скрытого” обобщающего свойства (глобального понятия) на значения измеряемых показателей Х j .

Пример интерпретации результатов компонентного анализа:

Название главной компоненты F 1 определяется наличием в ее структуре значимых признаков Х 1 , Х 2 , Х 4 , Х 6 , все они представляют характеристики эффективности производственной деятельности, т.е. F 1 - эффективность производства .

Название главной компоненты F 2 определяется наличием в ее структуре значимых признаков Х 3 , Х 5 , Х 7, т.е. F 2 - это размер производственных ресурсов .

ЗАКЛЮЧЕНИЕ

В пособии даны методические материалы, предназначенные для освоения экономико-математического моделирования в целях обоснования принимаемых управленческих решений. Большое внимание уделено математическому программированию, включая целочисленное программирование, нелинейное программирование, динамическое программирование, задачам транспортного типа, теории массового обслуживания, методу главных компонент. Подробно рассмотрено моделирование в практике организации и управления производственными системами, в предпринимательской деятельности и финансовом менеджменте. Изучение представленного материала предполагает широкое использование техники моделирования и расчетов с использованием комплекса программ PRIMA и в среде электронной таблицы Excel.

ПРИМЕНЕНИЕ МЕТОДА ГЛАВНЫХ КОМПОНЕНТ

ДЛЯ ОБРАБОТКИ МНОГОМЕРНЫХ СТАТИСТИЧЕСКИХ ДАННЫХ

Рассмотрены вопросы обработки многомерных статистических данных рейтинговой оценки студентов на основе применения метода главных компонент.

Ключевые слова: многомерный анализ данных, снижение размерности, метод главных компонент, рейтинг.

На практике часто приходится сталкиваться с ситуацией, когда объект исследования характеризуется множеством разнообразных параметров, каждый из которых измеряется или оценивается. Анализ полученного в результате исследования нескольких однотипных объектов массива исходных данных представляет собой практически нерешаемую задачу. Поэтому исследователю необходимо проанализировать связи и взаимозависимости между исходными параметрами, с тем чтобы отбросить часть из них или заменить их меньшим числом каких-либо функций от них, сохранив при этом по возможности всю заключенную в них информацию.

В связи с этим встают задачиснижения размерности, т. е. перехода от исходного массива данных к существенно меньшему количеству показателей, отобранных из числа исходных или полученных путем некоторого их преобразования (с наименьшей потерей информации, содержащейся в исходном массиве), и классификации – разделения рассматриваемой совокупности объектов на однородные (в некотором смысле) группы. Если по большому числу разнотипных и стохастически взаимосвязанных показателей были получены результаты статистического обследования целой совокупности объектов, то для решения задач классификации и снижения размерности следует использовать инструментарий многомерного статистического анализа, в частности метод главных компонент .


В статье предлагается методика применения метода главных компонент для обработки многомерных статистических данных. В качестве примера приводится решение задачи статистической обработки многомерных результатов рейтинговой оценки студентов.

1. Определение и вычисление главных компонент ..png" height="22 src="> признаков. В результате получаем многомерные наблюдения, каждое из которых можно представить в виде векторного наблюдения

где https://pandia.ru/text/79/206/images/image005.png" height="22 src=">.png" height="22 src=">– символ операции транспонирования.

Полученные многомерные наблюдения необходимо подвергнуть статистической обработке..png" height="22 src=">.png" height="22 src=">.png" width="132" height="25 src=">.png" width="33" height="22 src="> допустимых преобразований исследуемых признаков 0 " style="border-collapse:collapse">

– условие нормировки;

– условие ортогональности

Полученные подобным преобразованием https://pandia.ru/text/79/206/images/image018.png" width="79" height="23 src="> и представляют собой главные компоненты. Из нихпри дальнейшем анализеисключают переменные с минимальной дисперсией , т. е..png" width="131" height="22 src="> в преобразовании (2)..png" width="13" height="22 src="> этой матрицы равны дисперсиям главных компонент .

Таким образом, первой главной компонентой https://pandia.ru/text/79/206/images/image013.png" width="80" height="23 src=">называется такая нормированно-центрированная линейная комбинация этих показателей, которая среди всех прочих подобных комбинаций обладает наибольшей дисперсией..png" width="12" height="22 src=">собственный вектор матрицы https://pandia.ru/text/79/206/images/image025.png" width="15" height="22 src=">.png" width="80" height="23 src="> называется такая нормированно-центрированная линейная комбинация этих показателей, которая не коррелирована с https://pandia.ru/text/79/206/images/image013.png" width="80" height="23 src=">.png" width="80" height="23 src="> измеряются в различных единицах, то результаты исследования с помощью главных компонент будут существенно зависеть от выбора масштаба и природы единиц измерения , а полученные линейные комбинации исходных переменных будет трудно интерпретировать. В связи с этим при различных единицах измерения исходных признаков DIV_ADBLOCK310">


https://pandia.ru/text/79/206/images/image030.png" width="17" height="22 src=">.png" width="56" height="23 src=">. После подобного преобразования проводят анализ главных компонент относительно величин https://pandia.ru/text/79/206/images/image033.png" width="17" height="22 src=">, которая является одновременно корреляционной матрицей https://pandia.ru/text/79/206/images/image035.png" width="162" height="22 src=">.png" width="13" height="22 src="> на i - й исходный признак ..png" width="14" height="22 src=">.png" width="10" height="22 src="> равна дисперсии v - й главной компонентыhttps://pandia.ru/text/79/206/images/image038.png" width="10" height="22 src="> используются при содержательной интерпретации главных компонент..png" width="20" height="22 src=">.png" width="251" height="25 src=">

Для проведения расчетов векторные наблюдения агрегируем в выборочную матрицу, в которой строки соответствуют контролируемым признакам, а столбцы – объектам исследования (размерность матрицы – https://pandia.ru/text/79/206/images/image043.png" width="348" height="67 src=">

После центрирования исходных данных находим выборочную корреляционную матрицу по формуле

https://pandia.ru/text/79/206/images/image045.png" width="204" height="69 src=">

Диагональные элементы матрицы https://pandia.ru/text/79/206/images/image047.png" width="206" height="68 src=">

Недиагональные элементы этой матрицы представляют собой выборочные оценки коэффициентов корреляции между соответствующей парой признаков.

Составляем характеристическое уравнение для матрицы 0 " style="margin-left:5.4pt;border-collapse:collapse">

Находим все его корни:

Теперь для нахождения компонент главных векторов подставляем последовательно численные значения https://pandia.ru/text/79/206/images/image065.png" width="16" height="22 src=">.png" width="102" height="24 src=">

Например, при https://pandia.ru/text/79/206/images/image069.png" width="262" height="70 src=">

Очевидно, что полученная система уравнений совместна ввиду однородности и неопределенна, т. е. имеет бесконечное множество решений. Для нахождения единственного интересующего нас решения воспользуемся следующими положениями:

1. Для корней системы может быть записано соотношение

https://pandia.ru/text/79/206/images/image071.png" width="20" height="23 src="> – алгебраическое дополнение j -го элемента любой i -й строки матрицы системы.

2. Наличие условия нормировки (2) обеспечивает единственность решения рассматриваемой системы уравнений..png" width="13" height="22 src=">, определяются однозначно, за исключением того, что все они могут одновременно изменить знак. Однако знаки компонентов собственных векторов не играют существенной роли, так как их смена не влияет на результат анализа. Они могут служить только для индикации противоположных тенденций на соответствующей главной компоненте .

Таким образом, получаем собственный вектор https://pandia.ru/text/79/206/images/image025.png" width="15" height="22 src=">:

https://pandia.ru/text/79/206/images/image024.png" width="12" height="22 src="> проверяем по равенству

https://pandia.ru/text/79/206/images/image076.png" width="503" height="22">

… … … … … … … … …

https://pandia.ru/text/79/206/images/image078.png" width="595" height="22 src=">

https://pandia.ru/text/79/206/images/image080.png" width="589" height="22 src=">

где https://pandia.ru/text/79/206/images/image082.png" width="16" height="22 src=">.png" width="23" height="22 src="> – стандартизированные значения соответствующих исходных признаков.

Составляем ортогональную матрицу линейного преобразования https://pandia.ru/text/79/206/images/image086.png" width="94" height="22 src=">

Так как в соответствии со свойствами главных компонент сумма дисперсий исходных признаков равна сумме дисперсий всех главных компонент, то с учетом того, что мы рассматривали нормированные исходные признаки, можно оценить, какую часть общей изменчивости исходных признаков объясняет каждая из главных компонент. Например, для первых двух главных компонент имеем:

Таким образом, в соответствии с критерием информативности, используемым для главных компонент, найденных по корреляционной матрице, семьпервых главных компонент объясняют 88,97% общей изменчивости пятнадцати исходных признаков.

Используя матрицу линейного преобразования https://pandia.ru/text/79/206/images/image038.png" width="10" height="22 src="> (для семи первых главных компонент):

https://pandia.ru/text/79/206/images/image090.png" width="16" height="22 src="> – число дипломов, полученных в конкурсе научных и дипломных работ ; https://pandia.ru/text/79/206/images/image092.png" width="16" height="22 src=">.png" width="22" height="22 src=">.png" width="22" height="22 src=">.png" width="22" height="22 src="> – награды и призовые места, занятые на региональных, областных и городских спортивных соревнованиях.

3..png" width="16" height="22 src=">(число грамот по результатам участия в конкурсах научных и дипломных работ).

4..png" width="22" height="22 src=">(награды и призовые места, занятые на вузовских соревнованиях).

6. Шестая главная компонента положительно коррелирована с показателем DIV_ADBLOCK311">

4. Третья главная компонента – активность студентов в учебном процессе.

5. Четвертая и шестая компоненты – прилежность студентов в течение весеннего и осеннего семестров соответственно.

6. Пятая главная компонента – степень участия в спортивных соревнованиях университета.

В дальнейшем для проведения всех необходимых расчетов при выделении главных компонент предлагается использовать специализированные статистические программные комплексы, например STATISTICA, что существенно облегчит процесс анализа.

Описанный в данной статье процесс выделения главных компонент на примере рейтинговой оценки студентов предлагается использовать для аттестации бакалавров и магистров.

СПИСОК ЛИТЕРАТУРЫ

1. Прикладная статистика: Классификация и снижение размерности: справ. изд. / , ; под ред. . – М.: Финансы и статистика, 1989. – 607 с.

2. Справочник по прикладной статистике:в 2 т.: [пер. с англ.] / под ред. Э. Ллойда, У. Ледермана, . – М.:Финансы и статистика, 1990. – Т. 2. – 526 c.

3. Прикладная статистика. Основы эконометрики . В 2 т. Т.1. Теория вероятностей и прикладная статистика: учеб. для вузов / , B. C. Мхитарян. – 2-е изд., испр.– М: ЮНИТИ-ДАНА, 2001. – 656 с.

4. Афифи, А. Статистический анализ: подход с использованием ЭВМ: [пер. с англ.] / А. Афифи, С. Эйзен.– М.: Мир, 1982. – 488 с.

5. Дронов, статистический анализ: учеб. пособие / . – Барна3. – 213 с.

6. Андерсон, Т. Введение в многомерный статистический анализ / Т. Андерсон; пер. с англ. [и др.]; под ред. . – М.: Гос. изд-во физ.-мат. лит., 1963. – 500 с.

7. Лоули, Д. Факторный анализ как статистический метод / Д. Лоули, А. Максвелл; пер. с англ. . – М.: Мир, 1967. – 144 с.

8. Дубров, статистические методы: учебник / , . – М.: Финансы и статистика, 2003. – 352 с.

9. Кендалл, М. Многомерный статистический анализ и временные ряды / М. Кендалл, А. Стьюарт;пер. с англ. , ; под ред. , . – М.: Наука,1976. – 736 с.

10. Белоглазов, анализ в задачах квалиметрии образования / // Изв. РАН. Теория и системы управления. – 2006. – №6. – С. 39 – 52.

Материал поступил в редколлегию 8.11.11.

Работа выполнена в рамках реализации федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 гг. (государственный контракт № П770).

Метод главных компонент (PCA - Principal component analysis) - один из основных способов уменьшить размерность данных при наименьшей потере сведений. Изобретенный в 1901 г. Карлом Пирсоном он широко применяется во многих областях. Например, для сжатия данных, «компьютерного зрения», распознавания видимых образов и т.д. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных. Метод главных компонент часто называют преобразованием Кархунена-Лёве (Karhunen-Loeve transform) или преобразованием Хотеллинга (Hotelling transform). Также над этим вопросом работали математики Косамби (1943 г.), Пугачёв (1953 г.) и Обухова (1954 г.).

Задача анализа главных компонент имеет своей целью аппроксимировать (приблизить) данные линейными многообразиями меньшей размерности; найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных (то есть среднеквадратичное отклонение от среднего значения) максимален; найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально. В этом случае оперируют конечными множествами данных. Они эквивалентны и не используют никакой гипотезы о статистическом порождении данных.

Кроме того задачей анализа главных компонент может быть цель построить для данной многомерной случайной величины такое ортогональное преобразование координат, что в результате корреляции между отдельными координатами обратятся в ноль. Эта версия оперирует случайными величинами.

Рис.3

На приведённом выше рисунке даны точки P i на плоскости, p i - расстояние от P i до прямой AB. Ищется прямая AB, минимизирующая сумму

Метод главных компонент начинался с задачи наилучшей аппроксимации (приближения) конечного множества точек прямыми и плоскостями. Например, дано конечное множество векторов. Для каждого k = 0,1,...,n ? 1 среди всех k-мерных линейных многообразий в найти такое, что сумма квадратов уклонений x i от L k минимальна:

где? евклидово расстояние от точки до линейного многообразия.

Всякое k-мерное линейное многообразие в может быть задано как множество линейных комбинаций, где параметры в i пробегают вещественную прямую, а? ортонормированный набор векторов

где евклидова норма, ? евклидово скалярное произведение, или в координатной форме:

Решение задачи аппроксимации для k = 0,1,...,n ? 1 даётся набором вложенных линейных многообразий

Эти линейные многообразия определяются ортонормированным набором векторов (векторами главных компонент) и вектором a 0 . Вектор a 0 ищется, как решение задачи минимизации для L 0:

В итоге получается выборочное среднее:

Французский математик Морис Фреше Фреше Морис Рене (Frйchet Maurice Renй) (02.09.1878 г. - 04.06.1973 г.) - выдающийся французский математик. Трудился в области топологии и функционального анализа, теории вероятностей. Автор современных понятий о метрическом пространстве, компактности и полноте. Авт. в 1948 году обратил внимание, что вариационное определение среднего, как точки, минимизирующей сумму квадратов расстояний до точек данных, очень удобно для построения статистики в произвольном метрическом пространстве, и построил обобщение классической статистики для общих пространств, получившее название обобщённого метода наименьших квадратов.

Векторы главных компонент могут быть найдены как решения однотипных задач оптимизации:

1) централизуем данные (вычитаем среднее):

2) находим первую главную компоненту как решение задачи;

3) Вычитаем из данных проекцию на первую главную компоненту:

4) находим вторую главную компоненту как решение задачи

Если решение не единственно, то выбираем одно из них.

2k-1) Вычитаем проекцию на (k ? 1)-ю главную компоненту (напомним, что проекции на предшествующие (k ? 2) главные компоненты уже вычтены):

2k) находим k-ю главную компоненту как решение задачи:

Если решение не единственно, то выбираем одно из них.

Рис. 4

Первая главная компонента максимизирует выборочную дисперсию проекции данных.

Например, пусть нам дан центрированный набор векторов данных, где среднее арифметическое значение x i равно нулю. Задача? найти такое отртогональное преобразование в новую систему координат, для которого были бы верны следующие условия:

1. Выборочная дисперсия данных вдоль первой координаты (главной компоненты) максимальна;

2. Выборочная дисперсия данных вдоль второй координаты (вторая главная компоненты) максимальна при условии ортогональности первой координате;

3. Выборочная дисперсия данных вдоль значений k-ой координаты максимальна при условии ортогональности первым k ? 1 координатам;

Выборочная дисперсия данных вдоль направления, заданного нормированным вектором a k , это

(поскольку данные центрированы, выборочная дисперсия здесь совпадает со средним квадратом уклонения от нуля).

Решение задачи о наилучшей аппроксимации даёт то же множество главных компонент, что и поиск ортогональных проекций с наибольшим рассеянием, по очень простой причине:

и первое слагаемое не зависит от a k .

Матрица преобразования данных к главным компонентам строится из векторов «A» главных компонент:

Здесь a i -- ортонормированные векторы-столбцы главных компонент, расположенные в порядке убывания собственных значений, верхний индекс T означает транспонирование. Матрица A является ортогональной: AA T = 1.

После преобразования большая часть вариации данных будет сосредоточена в первых координатах, что даёт возможность отбросить оставшиеся и рассмотреть пространство уменьшенной размерности.

Самым старым методом отбора главных компонент является правило Кайзера , Кайзер Иоганн Генрих Густав (Kaiser Johann Henrich Gustav, 16.03.1853 г., г.Брезно, Пруссия - 14.10.1940 г., Германия) - выдающийся немецкий математик, физик, исследователь в области спектрального анализа. Авт. по которому значимы те главные компоненты, для которых

то есть л i превосходит среднее значение л (среднюю выборочную дисперсию координат вектора данных). Правило Кайзера хорошо работает в простых случаях, когда есть несколько главных компонент с л i , намного превосходящими среднее значение, а остальные собственные числа меньше него. В более сложных случаях оно может давать слишком много значимых главных компонент. Если данные нормированы на единичную выборочную дисперсию по осям, то правило Кайзера приобретает особо простой вид: значимы только те главные компоненты, для которых л i > 1.

Одним из наиболее популярных эвристических подходов к оценке числа необходимых главных компонент является правило сломанной трости , когда набор нормированных на единичную сумму собственных чисел (, i = 1,...n) сравнивается с распределением длин обломков трости единичной длины, сломанной в n ? 1-й случайно выбранной точке (точки разлома выбираются независимо и равнораспределены по длине трости). Если L i (i = 1,...n) - длины полученных кусков трости, занумерованные в порядке убывания длины: , тогда математическое ожидание L i:

Разберём пример, заключающийся в оценке числа главных компонент по правилу сломанной трости в размерности 5.

Рис. 5.

По правилу сломанной трости k-й собственный вектор (в порядке убывания собственных чисел л i) сохраняется в списке главных компонент, если

На рисунке выше приведён пример для 5-мерного случая:

l 1 =(1+1/2+1/3+1/4+1/5)/5; l 2 =(1/2+1/3+1/4+1/5)/5; l 3 =(1/3+1/4+1/5)/5;

l 4 =(1/4+1/5)/5; l 5 =(1/5)/5.

Для примера выбрано

0.5; =0.3; =0.1; =0.06; =0.04.

По правилу сломанной трости в этом примере следует оставлять 2 главных компоненты:

Следует только иметь в ввиду, что правило сломанной трости имеет тенденцию занижать количество значимых главных компонент.

После проецирования на первые k главных компонент с удобно произвести нормировку на единичную (выборочную) дисперсию по осям. Дисперсия вдоль iй главной компоненты равна), поэтому для нормировки надо разделить соответствующую координату на. Это преобразование не является ортогональным и не сохраняет скалярного произведения. Ковариационная матрица проекции данных после нормировки становится единичной, проекции на любые два ортогональных направления становятся независимыми величинами, а любой ортонормированный базис становится базисом главных компонент (напомним, что нормировка меняет отношение ортогональности векторов). Отображение из пространства исходных данных на первые k главных компонент вместе с нормировкой задается матрицей

Именно это преобразование чаще всего называется преобразованием Кархунена-Лоэва, то есть собственно методом главных компонент. Здесь a i -- векторы-столбцы, а верхний индекс T означает транспонирование.

В статистике при использовании метода главных компонент используют несколько специальных терминов.

Матрица данных , где каждая строка - вектор предобработанных данных (центрированных и правильно нормированных), число строк - m (количество векторов данных), число столбцов - n (размерность пространства данных);

Матрица нагрузок (Loadings) , где каждый столбец - вектор главных компонент, число строк -- n (размерность пространства данных), число столбцов - k (количество векторов главных компонент, выбранных для проецирования);

Матрица счетов (Scores)

где каждая строка - проекция вектора данных на k главных компонент; число строк - m (количество векторов данных), число столбцов - k (количество векторов главных компонент, выбранных для проецирования);

Матрица Z-счетов (Z-scores)

где каждая строка-- проекция вектора данных на k главных компонент, нормированная на единичную выборочную дисперсию; число строк - m (количество векторов данных), число столбцов - k (количество векторов главных компонент, выбранных для проецирования);

Матрица ошибок (остатков ) (Errors or residuals)

Основная формула:

Таким образом, Метод главных компонент, один из основных методов математической статистики. Основным предназначением его является разграничение между необходимостью исследования массивов данных при минимуме их использования.

Читайте также: