Белки, разложение. Бактерии гниения и разложения Разложение белков под действием ферментов микроорганизмов называется

Гниением называется разложение белковых веществ микро­организмами. Это порча мяса, рыбы, плодов, овощей, древесины, а также процессы, происходящие в почве, навозе и др.

В более узком понимании гниением принято считать процесс разложения белков или субстратов, богатых белком, под влиянием микроорганизмов.

Белки являются важной составной частью жи­вого и отмершего органического мира, содержатся во многих пищевых продуктах. Белки характеризуются большим разнооб­разием и сложностью строения.

Способность разрушать белковые вещества присуща многим микроорганизмам. Одни микроорганизмы вызывают неглубокое расщепление белка, другие могут разрушать его более глубоко. Гнилостные процессы постоянно протекают в природных усло­виях и нередко возникают в продуктах и изделиях, содержащих белковые вещества. Разложение белка начинается с его гидролиза под влиянием протеолитических ферментов, выделяемых микробами в окружающую среду. Гниение протекает при наличии высокой температуры и влажности.

Аэробное гниение . Протекает в присутствии кислорода воздуха. Конечными продуктами аэробного гниения являются, кроме аммиака, диоксид углерода, сероводород и меркаптаны (обладающие запахом тухлых яиц). Сероводород и меркаптаны образуются при разложении серосодержащих аминокислот (цистина, цистеина, метионина). К числу гнилостных бактерий, разрушающих белковые ве­щества в аэробных условиях, относится также бациллус. микоидес. Эта бактерия широко распространена в почве. Она представляет собой подвижную спорообразующую палочку.

Анаэробное гниение . Протекает в анаэробных условиях. Конечными продуктами анаэробного гниения являются продукты декарбоксилирования аминокислот (отнятие карбоксильной группы) с образованием дурно пахнущих веществ: индола, акатола, фенола, крезола, диаминов (их производные являются трупными ядами и могут вызывать отравления).

Наиболее распространенными и активными возбудителями гниения в анаэробных условиях являются бациллус путрификус и бациллус спорогенес.

Оптимальная температура развития для большей части гни­лостных микроорганизмов находится в пределах 25-35°С. Низ­кие температуры не вызывают их гибели, а лишь приостанавли­вают развитие. При температуре 4-6°С жизнедеятельность гни­лостных микроорганизмов подавляется. Бесспоровые гнилостные бактерии погибают при температуре выше 60°С, а спорообразующие бактерии выдерживают нагревание до 100°С.

Белки разлагаются актиномицетами или до конечных продуктов (сероводорода, аммиака и воды), или до образования промежуточных веществ (пептонов, аминокислот). Интенсивность разложения белков зависит от условий аэрации, состава питательной среды, температуры и других факторов.[ ...]

Разложение азотсодержащих веществ (белков) протекает в два этапа. На первом под влиянием аэробных и анаэробных микроорганизмов белки расщепляются с выделением содержащегося в них азота в виде МНз (стадия аммонификации) и образованием пептонов (продуктов первичного распада белков), а затем аминокислот. Последующее окислительное и восстановительное дезаминирование и декарбок-силированне приводят к полному распаду пептонов и аминокислот. Длительность первого этапа составляет от одного до нескольких лет. На втором этапе ЫНз окисляется сначала до Н1 02, а затем до НЫОз. Окончательное возвращение азота в атмосферу происходит под действием бактерий - денитрификаторов, которые разлагают нитраты молекулярного азота. Продолжительность периода минерализации составляет 30-40 лет и более.[ ...]

Разложение с ер у со держащих соединений. Сера входит в состав некоторых белков. При гидролитическом распаде белков она восстанавливается до сероводорода, который представляет собой токсичное соединение для многих групп микроорганизмов. Но в водоемах и почве встречаются серобактерии, окисляющие восстановленные соединения серы до свободной серы и сульфатов. Эти бактерии живут при высоких концентрациях сероводорода в окружающей среде. Сероводород для них служит источником энергии для синтеза органического вещества.[ ...]

Разложение включает как абиотические, так и биотические процессы. Однако обычно мертвые растения и животные разлагаются гетеротрофными микроорганизмами и сапрофагами. Такое разложение есть способ, посредством которого бактерии и грибы получают для себя пищу. Разложение, следовательно, происходит благодаря энергетическим превращениям в организмах и между ними. Этот процесс абсолютно необходим для жизни, так как без него все питательные вещества оказались бы связанными в мертвых телах и никакая новая жизнь не могла бы возникать. В бактериальных клетках и мицелии грибов имеются наборы ферментов, необходимых для осуществления специфических химических реакций. Эти ферменты выделяются в мертвое вещество; некоторые из продуктов его разложения поглощаются разлагающими организмами, для которых они служат пищей, другие остаются в среде; кроме того, некоторые продукты выводятся из клеток. Ни один вид сапротрофов не может осуществить полное разложение мертвого тела. Однако гетеротрофное население биосферы состоит из большого числа видов, которые, действуя совместно, производят полное разложение. Различные части растений и животных разрушаются с неодинаковой скоростью. Жиры, сахара и белки разлагаются быстро, а целлюлоза и лигнин растений, хитин, волосы и кости животных разрушаются очень медленно. Отметим, что около 25% сухого веса трав разложилось за месяц, а остальные 75% разлагались медленнее. Через 10 мес. еще оставалось 40% первоначальной массы трав. Остатки же крабов исчезли к этому времени полностью.[ ...]

При разложении белков образуются также аммиак и его производные, попадающие также в воздух и воду океана. В биосфере в результате нитрификации - окисления аммиака и других азотсодержащих органических соединений при участии бактерий - образуются различные оксиды азота, которые являются основой образования азотной кислоты. Азотная кислота, соединяясь с металлами, дает соли. В результате деятельности денитрофицирующих бактерий соли азотной кислоты восстанавливаются до азотистой кислоты и далее до свободного азота.[ ...]

Анаэробное разложение белков вызывается спорообразующими палочками: Bacillus putrificus, Bacillus sporogenes. Разложение белковых соединений вызывается и факультативными анаэробами Proteus vulgaris, Bacteria coli. Степень и интенсивность разложения белковых соединений зависит от химической структуры белка и вида микроорганизмов. Аминокислоты, образующиеся в процессе распада белков в анаэробных условиях, подвергаются восстановительному дезаминированию с образованием предельных органических кислот и аммиака. Органические кислоты могут разлагаться с образованием метана и диоксида углерода. Продуктами аммонификации в анаэробных условиях будут метан, аммиак и диоксид углерода.[ ...]

[ ...]

Встречается при разложении алкалоидов и белков.[ ...]

АММОНИФИКАЦИЯ - процесс разложения микроорганизмами азотсодержащих органических соединений (белков, нуклеиновых кислот и др.) с выделением аммиака. АМПЛИТУДА ЭКОЛОГИЧЕСКАЯ [лат. amplitude - величина] - пределы приспособляемости вида или сообщества к изменяющимся условиям среды.[ ...]

Образующийся при разложении белков и мочевины аммиак в виде аммонийных солей усваивается растениями или претерпевает дальнейшие микробиологические превращения.[ ...]

Наиболее устойчивыми продуктами разложения являются гумино-вые вещества (гумус), которые, как уже подчеркивалось, представляют собой обязательный компонент экосистем. Удобно различать три стадии разложения: 1) измельчение детрита путем физического и биологического воздействия; 2) относительно быстрое образование гумуса и высвобождение растворимых органических веществ сапротрофами; 3) медленная минерализация гумуса. Медленность разложения гумуса - один из факторов, обусловливающих запаздывание разложения по сравнению с продукцией и накоплением кислорода; о значении двух последних процессов уже говорилось. Обычно гумус выглядит как темное, часто желтовато-коричневое аморфное или коллоидное вещество. Согласно М. М. Кононовой (1961), физические свойства и химическое строение гумуса мало различаются в географически удаленных или биологически различных экосистемах. Однако охарактеризовать химически вещества гумуса весьма трудно, и это не удивительно, если учесть огромное разнообразие органических веществ, из которых он происходит. В общем гуминовые вещества представляют собой продукты конденсации ароматических соединений (фенолов) с продуктами распада белков и полисахаридов. Модель молекулярной структуры гумуса показана на стр. 475. Это бензольное кольцо фенола с боковыми цепями; такое строение обусловливает устойчивость гуминовых веществ к микробному разложению. Расщепление соединений, очевидно, требует специальных ферментов типа дезоксигеназ (Джибсон, 1968), которые часто отсутствуют у обычных почвенных и водных сапротрофов. По иронии судьбы многие токсические продукты, которые человек вводит в окружающую среду - гербициды, пестициды, промышленные сточные воды, - являются производными бензола и представляют серьезную опасность из-за своей устойчивости к разложению.[ ...]

Аммиак образуется главным образом при разложении биогенных азотсодержащих соединений - белков и мочевины. Наиболее вероятная величина потока 1>Ш3 из всех наземных источников в атмосферу составляет 70-100 Мт Ы/год. Антропогенная эмиссия аммиака составляет только примерно 4 Мт К/год.[ ...]

Это можно объяснить меньшим отношением белков и углеводов к количеству жиров в осадке сточных вод мясокомбината по сравнению с осадком бытовых сточных вод; как известно, основным материалом для построения тела микроорганизмов, участвующих в процессе разложения жиров, являются белки в соединении с углеводами, а энергетическим материалом для их жизнедеятельности служат углеводы. Поэтому соотношение сбраживаемых компонентов влияет на распад органических веществ.[ ...]

Много ценного в раскрытии сущности процесса разложения органических азотистых соединений внесли исследования В. С. Буткевича. Ему удалось показать, что накапливание аммиака при процессах аммонификации строго координировано с наличием в среде углеводов. Если в среде углеводов нет, то микроорганизмы интенсивно используют белковые вещества в качестве материала для дыхания, а азот окисленных аминокислот накапливается в форме аммиака. Если же углеводы имеются, то белковые вещества используются в меньшей мере и накапливание аммиака сильно падает, а иногда и вовсе не происходит. Эти закономерности весьма важны при сбраживании осадков сточных вод. По наличию в иловой жидкости азота аммонийных солей можно судить о том, какие вещества претерпевают разложение: белки или углеводы.[ ...]

Распад основных органических компонентов осадка - белка, жиров, углеводов - происходит с различной интенсивностью, в зависимости от преобладающей формы тех или иных микроорганизмов. Так, например, для септиков характерна обстановка, создающая условия для развития анаэробных гнилостных бактерий первой стадии (фазы) разложения органических веществ.[ ...]

Почти весь азот, взятый растением из почвы, входит в состав растительного белка, который при распаде (гниении) и отщепляет азот в форме аммиака, и его можно чувствовать в конюшне при разложении конского навоза (конский навоз характеризуется особенно энергичным разложением, почему и используется для нагревания парников).[ ...]

Азот - один из наиболее необходимых для растений ЭJ ментов. Он входит в состав белков, хлорофилла и многих Д[ гих органических веществ растений. Основная масса азе сосредоточена в органическом веществе почвы, и прежде в(го в гумусе. Азот доступен растениям главным образом в фс ме минеральных соединений - аммиака и нитратов, котор образуются при разложении органического вещества особ ми микроорганизмами. Поэтому требуется пополнение запасов почвенного азота других источников.[ ...]

Органические вещества, содержащиеся в почве, включают в себя вещества, образующиеся при разложении белков, жиров, углеводов, в том числе: смолы, клетчатку, эфирные масла. Для процессов разложения органики важно содержание организмов - деструкторов (бактерий, простейших). На одном гектаре почвы могут находиться от 1000 до 7000 кг различных бактерий, 350-1000 кг червей, до 1000 кг членистоногих, от 100 до 1000 кг микроскопических грибов. Эти микроорганизмы встречаются по всей толщине почвы, которая может достигать нескольких метров. Беспозвоночные животные в основном обитают в верхних слоях. Аналогично - корневая система растений расположена в основном на глубинах в несколько метров (за исключением некоторых, например, верблюжьей колючки, корни которой проникают вглубь на 15 м).[ ...]

Запах сточных вод населенных мест, представляющий собой смесь запаха фекалий с запахами разложения жиров, белков, мыла и т. д., является довольно характерным. Он зависит от разложения хозяйственно-бытовых стоков и от того, какие в воде преобладают процессы - окислительные или восстановительные. Подобный запах могут иметь также некоторые сточные воды предприятий пищевой промышленности. Сточные воды от термической переработки угля имеют запах фенолов, смолы, сероводорода; сточные воды химической промышленности имеют характерные запахи, зависящие от вида производства, например запах органических соединений: сероуглерода, сложных и простых эфиров, спиртов, органических кислот, азотсодержащих соединений, меркаптанов, ацетилена и т. д.[ ...]

Полисапробная зона характерна для свежезагрязненной воды, где протекают начальные этапы разложения органических соединений. Полисапробные воды содержат большое количество органических веществ, в первую очередь белков и углеводов. При разложении этих веществ в большом количестве выделяются углекислота, сероводород, метан. Вода бедна кислородом, поэтому химические процессы носят восстановительный характер. Резко выраженные неблагоприятные условия среды ведут к ограничению числа видов в растительном и животном населении водоема. Основными обитателями являются бактерии, количество которых достигает сотен миллионов в 1 мл воды. Очень много серобактерий и инфузорий. Все обитатели полисапробной зоны по способу питания относятся к коясуйентам (потребителям), или иначе гетеротрофам. Они г нуждаются в готовом органическом веществе. Продуценты (производители), т. е. автотрофы, к которым относятся зеленые растения, создающие органическое вещество из минеральных соединений, здесь совершенно отсутствуют.[ ...]

Состав органических веществ многообразен и включает компоненты, образующиеся на разных стадиях разложения сложных углеводов, белков, жиров и углеводов; почвенные органические вещества содержат лигнин, клетчатку, эфирные масла, смолы, дубильные вещества. Определенную роль в создании гумуса играет почвенная фауна -черви и специфическая почвенная микрофлора. В целом происходит обогащение почв аминокислотами и другими органическими соединениями.[ ...]

В литературе указывается, что гуминовые вещества возникают в естественных условиях как продукты разложения белков, целлюлозы и лигнина. Они делятся на гуминовые кислоты и нерастворимый лигнин. В данной работе рассматриваются только гуминовые кислоты, соли которых растворимы в воде и способны к выщелачиванию.[ ...]

Другие физиологические группы анаэробов участвуют в круговороте азотсодержащих веществ: разлагают белки, аминокислоты, пурины (протеолитические, пуринолитические бактерии). Многие же способны активно фиксировать атмосферный азот, переводя его в органическую форму. Эти анаэробы способствуют повышению плодородия почв. Количество клеток протеолитических и сахаролитических анаэробов в 1 г плодородных почв достигает даже миллионов. Особое значение имеют те группы микроорганизмов, которые участвуют в разложении труднодоступных форм органических соединений, таких, как пектиновые вещества и целлюлоза. Именно эти вещества составляют большую долю растительных остатков и являются главным источником углерода для почвенных микроорганизмов.[ ...]

В процессе жизнедеятельности многие бактерии могут подкислять или подщелачивать среду. Например, при разложении мочевины или белков образуется аммиак, а при потреблении солей органических кислот в среде накапливаются катионы щелочных металлов.[ ...]

Окисление белковых соединений происходит до конца с образованием аммиака, диоксида углерода, воды. Если в белках содержится сера, то в качестве промежуточных соединений образуются еще меркаптаны (тиоспирты), а при полном распаде образуется сероводород. Наиболее распространенные аэробные возбудители разложения белков: Bacterium fluorescens, Bacillus subtilis, Bacillus mycoides. Кроме того, разложение белковых соединений может вызываться актиномицетами и многими грибами. Нуклеопротеицы, содержащие нуклеиновые кислоты, связанные с аминокислотными остатками, разлагаются с образованием углеводов - рибозы и де-зоксирибозы, азотистых органических оснований и фосфорной кислоты.[ ...]

Сернистый газ выделяется в атмосферу при сгорании органического топлива (уголь, нефть, бензин, газ) за счет разложения содержащих серу белков, а также от предприятий, перерабатывающих сернистые руды. Мощным источником выделения сернистого газа в городах является автотранспорт.[ ...]

Азотсодержащие вещества (аммонийные соли, нитриты и нитраты) образуются в воде главным образом в результате разложения белковых соединений, попадающих в водоем со сточными бытовыми и промышленными водами. Реже в воде встречается аммиак минерального происхождения, образовавшийся в результате восстановления органических азотистых соединений. Если причиной образования аммиака является гниение белков, то такие воды не пригодны для питья.[ ...]

Две первые группы используют легче разлагаемые органические вещества, такие, как сахара, аминокислоты и простые белки. Затем начинают свою «работу» над более стойкими соединениями целлюлозные ■бактерии, актиномицеты же имеют прямое отношение к гумусу. Возможная модель структуры молекулы гуминовой кислоты показана ниже.[ ...]

Осадок сточных вод и концентрированные производственные сточные воды с ВПК выше 5 г/л подвергаются биохимическому разложению в анаэробных условиях. Оно может происходить в сооружениях-септиках, представляющих собой отстойник, через который медленно проходит сточная жидкость. В двухъярусном отстойнике осадок отделен от проходящей сточной жидкости, его разложение осуществляется в иловой камере. На очистных сооружениях большой производительности осадок сточных вод выделяется в первичных отстойниках и вместе с избыточным активным илом подвергается сбраживанию в метантенках. Интенсивность и глубина разложения осадка прежде всего определяются его составом, который колеблется по соотношению содержания основных органических компонентов (углеводов/ белков, жироподобных соединений) и неорганических веществ. Обычно в осадке городских сточных вод содержится 70-80% органических веществ. Так, примерный состав осадка (%): белки 24, углеводы 23, жироподобные вещества до 30. Чаще всего при кислом брожении осадка получаются уксусная, масляная, пропионовая кислоты. Образующиеся газы содержат диоксид углерода, метан, водород, сероводород. Водная фаза имеет кислую реакцию среды (pHС5), не обладает буферными свойствами, имеет резкий неприятный запах.[ ...]

С хозяйственно-бытовыми и производственными сточными водами, в том числе со стоками с промплощадок, в водоемы попадают белки, жиры, масла, нефть и нефтепродукты, красители, смолы, дубильные вещества, моющие средства и многие другие загрязнения. С полей вымываются удобрения и пестициды - средства борьбы с вредителями сельскохозяйственных культур. Поэтому в водах открытых источников водоснабжения в разных концентрациях содержатся фактически любые химические элементы, в том числе такие вредные для здоровья, как свинец, цинк, олово, хром, медь. Не имея целью дать полный обзор состава загрязнений, попадающих со сточными водами, и полагая, что свойства биологических примесей достаточно подробно рассмотрены в предыдущем разделе этой главы, остановимся лишь на некоторых видах загрязнений, отличительными признаками которых являются: широкая распространенность, особенно в последние годы; токсические свойства; трудное отделение при очистке сточных вод; медленное окисление и разложение в открытых водоемах; мешающее действие, оказываемое на процессы очистки воды, в том числе на коагуляцию; способность“быть индикаторами глубины очистки воды от отдельных [элементов.[ ...]

Образование гумусовых веществ совершается при участии процессов двух типов. Процессы первого типа обеспечивают частичное разложение (расщепление) мертвого органического вещества до более простых соединений: белки расщепляются на аминокислоты, углеводы - на простые сахара, расщепление лигнина изучено недостаточно. В результате процессов второго типа происходит конденсация ароматических соединений фенольного типа (продуктов распада лигнина и целлюлозы) с аминокислотами (продуктами распада микроорганизмов). В итоге возникает система органических высокомолекулярных кислот, способных к дальнейшей полимеризации. В процессе формирования гумуса и поддерживания его состава важную роль играют гетеротрофные и автотрофные микроорганизмы, геохимическая деятельность которых была рассмотрена ранее.[ ...]

Органический состав. Он формируется из соединений, содержащихся в большом количестве в растительных и животных остатках. Это белки, углеводы, органические кислоты, жиры, лигнин, дубильные вещества и др., в сумме составляющие 10-15% от всей массы органического вещества в почве. При разложении органических веществ содержащийся в них азот переходит в формы, доступные растениям. Органические вещества играют важную роль в почвообразовании, определяют величину поглотительной способности почв, воздействуют на структуру верхних горизонтов почвы и ее физические свойства.[ ...]

Значительная часть азота гуминовых кислот переходит в раствор при более слабом гидролизе (С. С. Драгунов) по сравнению с типичными белками. Кроме того, белки растительных остатков легко и быстро разлагаются почвенными микроорганизмами, распад их сопровождается ресинтезом белка микробной плазмы, который, в свою очередь, легко подвергается разложению. Поэтому гидролизуемая часть азота гуминовой кислоты представлена, по-видимому, не белками, а продуктами глубокого их распада - аминокислотами, находящимися в форме непрочной связи с ядром гуминовой кислоты.[ ...]

ТОКСИНЫ - ядовитые вещества, образуемые некоторыми микроорганизмами, растениями и животными. По химической природе - полипептиды и белки. Иногда термин Т. распространяется и на яды небелковой природы. Наиболее изучены микробные Т., которые делят на экзотоксины (экскретируются в среду во время роста) и эндотоксины (выделяются после гибели организмов) . ТОКСИФИКАЦИЯ - увеличение токсичности в результате образования новых более ядовитых веществ при разложении (биологическом или физико-химическом) пестицидов. Ср. Загрязняющее вещество, Вредное вещество. ТОКСИЧНОЕ ДЕЙСТВИЕ ЗАГРЯЗНЯЮЩЕГО ВЕЩЕСТВА - вредное воздействие химического вещества на организмы (человека, животных, растений, грибов, микроорганизмы). При совместном токсичном действии нескольких загрязняющих веществ различают: суммирование вредных эффектов; сверхсуммирование, или потенцирование; нигиляцию - эффект меньший, чем при суммировании; изменение характера токсичного действия (напр., появление канцерогенных свойств) . ТОКСИЧНОСТЬ - ядовитость, свойство химических соединений оказывать вредное или даже летальное воздействие на организм.[ ...]

Значительный научный и практический интерес представляют нерастворимые в воде привитые сополимеры целлюлозы и биологически активных белков (ферментов, антигенов). Привитые сополимеры целлюлозы и ферментов могут быть использованы в качестве специфических катализаторов, которые в любой момент легко удалить из сферы реакции. Применение этих сополимеров позволяет решить ряд задач, которые не могут быть решены при использовании обычных водорастворимых ферментов, например выделение чистых продуктов ферментативного разложения субстрата, выделение и последующее исследование промежуточных продуктов ферментативного разложения субстрата, активация фермента с последующим полным удалением активирующего вещества, сорбция, последующее выделение и изучение ингибиторов ферментов . Нерастворимые в воде привитые сополимеры целлюлозы и антигенов, которые получили название иммуноадсорбентов, применяются для адсорбции антител с целью их количественного определения, выделения в чистом виде для последующего изучения и применения . Для синтеза нерастворимых в воде привитых сополимеров биологически активных белков целесообразно использовать целлюлозу, а не синтетические полимеры, так как неспецифическая адсорбция белка на целлюлозных материалах значительно ниже, чем на синтетических полимерах.[ ...]

Развитие вблизи водоемов высшей растительности является причиной попадания в воду растворенных органических продуктов их жизнедеятельности и распада. В результате разложения макрофитов в воде могут появляться белки, углеводы, органические кислоты, дубильные вещества, а также практически нерастворимые в воде лигнин, гемицеллюлоза, жиры, воск и смолы.[ ...]

В живой клетке одновременно протекают самые разнообразные и притом многоэтапные процессы: окисление и восстановление, синтез и распад, перенос метильных радикалов, гидролиз и т. п. Некоторые микробы обладают способностью участвовать в ряде этапов разложения вещества. Например, они могут использовать белки, а затем углеводы, окислять спирты и кислоты, спирты и затем альдегиды, потреблять элементарный азот, а потом связанный азот и т. п. Но есть и такие микробы, которые способны потреблять только некоторые определенные углеводороды и аминокислоты, не используя других.[ ...]

Ткани келпа состоят примерно на 87% из воды и на 13°/ органических и минеральных веществ, причем первые составл от 55 до 62 % сухого остатка. Белки, составляющие 5-7 % сухого оста по пищевой ценности соответствуют белку сои и могут быть пользованы как добавки в корм животных. Кулллни сравнивает заросли гантского келпа с настоящими подводными лесами, дающими п) и кров массе морских организмов и рыб. То же самое можно (зать и о зарослях ламинарии японской. Роль природных «защи ков» молоди эти заросли не потеряют и при искусственном ра, дении на океанских фермах.[ ...]

Скорость химических реакций в растительных образцах, взятых в период активной вегетации, намного выше, чем во многих анализируемых объектах (например, зерно, солома, семена). За счёт работы ферментов продолжаются биохимические процессы, в результате которых происходит разложение таких веществ, как крахмал, белки, органические кислоты и особенно витамины.[ ...]

Другие микробы, расщепляющие сахар, крахмал и даже клетчатку, производят летучие кислоты, и рядом угольную, водород и метан, ненужные организму, при чем тепловая энергия идет на пользу только микроорганизму и теряется для организма хозяина. Наконец, третьи бактерии расщепляют белки, так же, как и ферменты, в мелкие молекулы альбумозов и пептонов и далее в аминовые кислоты и основания. Но деятельность бактерий на этом не останавливается, как то нужно было бы для организма хозяина, а ведет дальше к разложению этих соединений на аммиак, жирные кислоты, алкоголь и углеводород, не нужные для хозяина.[ ...]

Основным элементом аэробного биоценоза является бактериальная клетка. В клетке происходят разнообразные многоэтапные процессы трансформации органических веществ. В составе биоценоза имеются бактерии, которые способны потреблять только определенные углеводороды или аминокислоты. Наряду с этим имеется большое число бактерий, участвующих в нескольких этапах разложения органического вещества. Они могут использовать сначала белки, а затем углеводы, окислять спирты, а затем кислоты или спирты и альдегиды и т. д. Одни виды микробов могут вести распад органического вещества до конца, например до образования углекислого газа и воды, другие только до образования промежуточных продуктов. По этой причине при очистке сточных вод дают необходимый эффект не отдельные культуры микроорганизмов, а их естественный комплекс, включая и более высокоразвитые виды [Роговская Ц. И., 1967 г.].[ ...]

Вонрос о веществах, используемых в процессе дыхания, издавна занимал физиологов. Еще в работах И. II. Бородина было показано, что интенсивность процесса дыхания прямо пропорциональна содержанию в тканях растений углеводов. Это дало основание предположить, что именпо углеводы являются основным веществом, потребляемым при дыхании. В выяснении данного вопроса большое значение имеет определение дыхательпого коэффициента. Если в процессе дыхания используются углеводы, то процесс идет, согласно уравнению СеН 120б + 6O2 = 6СО2+6Н2О, в этом случае дыхательный коэффициент равен единице- р = 1.Однако,если разложению в процессе дыхания подвергаются более окисленные соединения, например органические кислоты, поглощение кислорода уменьшается, дыхательный коэффициент становится больше единицы. При окислении в процессе дыхания более восстановленных соединений, таких, как жиры или белки, требуется больше кислорода и дыхательный коэффициент становится меньше единицы.

В метаболизме микроорганизмов азотсодержащие вещества подвергаются разнообразным превращениям. По случайно поверхностному сходству разные виды порчи пищевых продуктов нередко называют гниением. Однако гниение – это процесс глубокого разложения белковых веществ микроорганизмами.

Способность разлагать в той или иной степени белковые вещества свойственна многим микроорганизмам. Некоторые из них разлагают непосредственно белки, другие могут воздействовать только на более или менее простые продукты распада белковой молекулы, например на пептиды, аминокислоты и др.

Продукты разложения белков микробы используют для синтеза веществ своего организма, а также в качестве энергетического материала.

Химизм разложения белковых веществ. Гниение – сложный, многоступенчатый биохимический процесс, характер и конечный результат которого зависят от состава разлагаемых белков, условий процесса и видов вызывающих его микроорганизмов.

Белковые вещества не могут непосредственно поступать в клетки микроорганизмов, поэтому использовать белки могут только те микроорганизмы, которые обладают протеолитиче-скими ферментами – экзопротеазами, выделяемыми клетками в окружающую среду.

Процесс распада белков начинается с их гидролиза. Первичными продуктами гидролиза являются пептоны и пептиды. Они расщепляются до аминокислот, которые являются конечными продуктами гидролиза.

Образующиеся в процессе распада белков различные аминокислоты используются микроорганизмами или подвергаются ими дальнейшим изменениям, например дезаминированию, в результате чего образуются аммиак" и разнообразные органические соединения. Процесс дезаминирования может происходить различными путями. Различают дезаминирование гидролитическое, окислительное и восстановительное.

Гидролитическое дезаминирование сопровождается образованием оксикислот и аммиака. Если при этом происходит и декарбоксилирование аминокислоты, то образуются спирт, аммиак и углекислый газ:

1 Ввиду того что аммиак всегда имеется в конечных продуктах распада белков, процесс гниения называют также аммонификацией белковых веществ.

При окислительном ДеЗаМйнированйи образуются кетокислоты и аммиак:

При восстановительном дезаминировании образуются карбоновые кислоты и аммиак:

Из приведенных уравнений видно, что среди продуктов разложения аминокислот в зависимости от строения их радикала (R) обнаруживаются различные органические кислоты и спирты. Так, при разложении аминокислот жирного ряда могут накапливаться муравьиная, уксусная, пропионовая, масляная и другие кислоты, пропиловый, бутиловый, амиловый и другие спирты. При разложении аминокислот ароматического ряда промежуточными продуктами являются характерные продукты гниения: фенол, крезол, скатол, индол – вещества, обладающие очень неприятным запахом. При распаде аминокислот, содержащих серу, получается сероводород или его производные – меркаптаны (например, метилмеркаптан CH 3 SH). Меркаптаны обладают запахом тухлых яиц, который ощущается даже при ничтожно малых концентрациях.


Образующиеся при гидролизе белка диаминокислоты могут подвергаться декарбоксилированию без отщепления аммиака, в результате чего получаются диамины и углекислый газ. Например, лизин превращается в кадаверин:

Аналогично этому орнитин превращается в путресцин.

Кадаверин, путресцин и другие амины, образующиеся при гниении, часто объединяют под общим названием птомаины (трупные яды), некоторые из них обладают ядовитыми свойствами.

Дальнейшее превращение азотистых и безазотистых органических соединений, получающихся при распаде различных аминокислот, зависит от окружающих условий и состава микрофлоры. Аэробные микроорганизмы подвергают эти соединения окислению, так что они могут быть полностью минерализованы. В таком случае конечными продуктами гниения являются аммиак, углекислый газ, вода, сероводород, соли фосфорной кислоты. В анаэробных условиях не происходит полного окисления промежуточных продуктов распада аминокислот. В связи с этим кроме аммиака и углекислого газа накапливаются различные органические кислоты, спирты, амины и другие органические соединения, в числе которых могут быть вещества, обладающие ядовитыми свойствами, и вещества, придающие гниющему материалу отвратительный запах.

Возбудители гниения. Среди множества микроорганизмов,

способных в той или иной мере разлагать белки, особое значение имеют микроорганизмы, которые вызывают глубокий распад белков – собственно гниение. Такие микроорганизмы принято называть гнилостными. Из них наибольшее значение имеют бактерии. Гнилостные бактерии могут быть спорообра-зующими и бесспоровыми, аэробными и анаэробными. Многие из них мезофилы, но есть холодоустойчивые и термостойкие. Большинство чувствительны к кислотности среды.

Наиболее распространенными и активными возбудителями гнилостных процессов являются следующие.

Сенная и картофельная палочки 1 – аэробные, подвижные, грамположительные, спорообразующие бактерии

Рис. 32. Вас. subtills:

а – палочки и овальные споры; б – колония

(рис. 32). Споры их отличаются высокой термоустойчивостью. Температурный оптимум развития этих бактерий 35–45 °С, максимум роста – при температуре около 50–55 °С; при температуре ниже 5 °С они не размножаются. Помимо разложения белков, такие бактерии способны разлагать пектиновые вещества, полисахариды растительных тканей, сбраживать углеводы. Сенная и картофельная палочки широко распространены в природе и являются возбудителями порчи многих пищевых продуктов. Они вырабатывают антибиотические вещества, подавляющие рост многих болезнетворных и сапрофитных бактерий.

Бактерии рода Pseudomonas – аэробные подвижные палочки, с полярным жгутиком, не образующие спор, грамотри-цательные (рис. 33,а). Многие",виды холодоустойчивы, минимальная температура их роста от –2 до –5 °С, оптимум – около 20 °С. Многие псевдомонасы помимо протеолитической обладают липолитической активностью; они способны сбраживать углеводы с образованием кислот, выделять слизь. Развитие

1 В соответствии с Международным кодексом номенклатуры бактерий сенная и картофельная палочки рассматриваются как синонимы одного вида– Bacillus subtilis.

и биохимическая активность этих бактерий значительно тормозятся при рН ниже 5,5 и 5–6%-ной концентрации NaCl в среде. Псевдомонасы широко распространены в природе, являются антагонистами ряда бактерий и плесеней, так как образуют антибиотические вещества. Некоторые виды Psudomo-nas являются возбудителями болезней (бактериозов) культурных растений, плодов и овощей.

Протей (Proteus vulgaris)–мелкие грамотрицательные бесспоровые палочки с резко выраженными гнилостными свойствами. Белковые субстраты при развитии в них протея приобретают сильный гнилостный запах. В зависимости от усло-

Рис. 33.

а – Pseudomonas; б – Proteus vulgaris

вий жизни эти бактерии способны заметно менять свою форму и размеры (рис. 33, б).

Протей – факультативный анаэроб; сбраживает углеводы с образованием кислот и газов. Он хорошо развивается как при температуре 25 °С, так и при 37 °С, прекращая размножаться лишь при температуре около 5 °С, однако может сохраняться и в замороженных продуктах.

Характерной особенностью протея является его очень энер-гетичная подвижность. Это свойство лежит в основе метода ^выявления протея на пищевых продуктах и отделения его от сопутствующих бактерий. Некоторые виды протея выделяют токсические для человека вещества (см. с. 159).

Clostridium putrificum (рис. 34, а) – анаэробная подвижная, спорообразующая палочка. Относительно крупные споры ее располагаются ближе к концу клетки, которая при этом приобретает сходство с барабанной палочкой. Споры довольно термоустойчивы. Углеводы эта бактерия не сбраживает. Белки разлагают с образованием большого количества газов (NH 3 , H2S). Оптимальная температура развития 37– 43 °С, минимальная 5 °С.

Clostridium sporogertes (рис. 34, б) – анаэробная подвижная спороносная палочка. Споры термоустойчивы, в клетке они расположены ближе к ее концу. Характерным является очень быстрое (в течение первых суток роста) образование спор. Эта бактерия сбраживает углеводы с образованием кислот и газа, обладает липолитической способностью. При разложении белков обильно выделяется сероводород. Оптимальная температура развития 35–40 °С, минимальная – около 5 °С.

Оба вида клостридий известны как возбудители порчи баночных консервов (мясных, рыбных и др.).

Рис. 34.

а – Clostridium putrificum; б – Clostridium sporogenes

Практическое значение процессов гниения. Гнилостные микроорганизмы наносят нередко большой ущерб народному хозяйству, вызывая порчу ценнейших и богатых белками продуктов питания, например мяса и мясопродуктов, рыбы и рыбопродуктов, яиц, молока и др. Но эти микроорганизмы играют большую положительную роль в круговороте веществ в природе, минерализуя белковые вещества, попадающие в почву, воду.

Гниением называется разложение белковых веществ микро­организмами. Это порча мяса, рыбы, плодов, овощей, древесины, а также процессы, происходящие в почве, навозе и др.

В более узком понимании гниением принято считать процесс разложения белков или субстратов, богатых белком, под влиянием микроорганизмов.

Белки являются важной составной частью жи­вого и отмершего органического мира, содержатся во многих пищевых продуктах. Белки характеризуются большим разнооб­разием и сложностью строения.

Способность разрушать белковые вещества присуща многим микроорганизмам. Одни микроорганизмы вызывают неглубокое расщепление белка, другие могут разрушать его более глубоко. Гнилостные процессы постоянно протекают в природных усло­виях и нередко возникают в продуктах и изделиях, содержащих белковые вещества. Разложение белка начинается с его гидролиза под влиянием протеолитических ферментов, выделяемых микробами в окружающую среду. Гниение протекает при наличии высокой температуры и влажности.

Аэробное гниение . Протекает в присутствии кислорода воздуха. Конечными продуктами аэробного гниения являются, кроме аммиака, диоксид углерода, сероводород и меркаптаны (обладающие запахом тухлых яиц). Сероводород и меркаптаны образуются при разложении серосодержащих аминокислот (цистина, цистеина, метионина). К числу гнилостных бактерий, разрушающих белковые ве­щества в аэробных условиях, относится также бациллус. микоидес. Эта бактерия широко распространена в почве. Она представляет собой подвижную спорообразующую палочку.

Анаэробное гниение . Протекает в анаэробных условиях. Конечными продуктами анаэробного гниения являются продукты декарбоксилирования аминокислот (отнятие карбоксильной группы) с образованием дурно пахнущих веществ: индола, акатола, фенола, крезола, диаминов (их производные являются трупными ядами и могут вызывать отравления).

Наиболее распространенными и активными возбудителями гниения в анаэробных условиях являются бациллус путрификус и бациллус спорогенес.



Оптимальная температура развития для большей части гни­лостных микроорганизмов находится в пределах 25-35°С. Низ­кие температуры не вызывают их гибели, а лишь приостанавли­вают развитие. При температуре 4-6°С жизнедеятельность гни­лостных микроорганизмов подавляется. Бесспоровые гнилостные бактерии погибают при температуре выше 60°С, а спорообразующие бактерии выдерживают нагревание до 100°С.

Роль гнилостных микроорганизмов в природе, в процессах порчи пищевых продуктов.

В природе гниение играет большую положительную роль. Оно является составной частью круговорота веществ. Гнилост­ные процессы обеспечивают обогащение почвы такими формами азота, которые необходимы растениям.

Еще полтора века назад великий французский микробиолог Л. Пастер понял, что без микроорганизмов гниения и брожения, превращающих органику в неорганические соединения, жизнь на Земле стала бы невозможной. Наибольшее количество видов этой группы обитают в почве – в 1 г плодородной пахотной почвы их содержится несколько млрд. Почвенная флора в основном представлена бактериями гниения. Они разлагают органические остатки (отмершие тела растений и животных) до веществ, которые потребляют растения: углекислого газа, воды и минеральных солей. Этот процесс в масштабах планеты называется минерализацией органических остатков, чем больше бактерий в почве, тем интенсивнее идет процесс минерализации, следовательно, тем выше плодородие почвы. Однако гнилостные микроорганизмы и вызываемые ими процессы, в пищевой промышленности вызывают порчу продуктов и в особенности животного происхождения и материалов, содержащих белковые вещества. Для предотвращения порчи продуктов гнилостными микроорганизмами следует обеспечивать такой режим их хра­нения, который исключал бы развитие этих микроорганизмов.

Для предохранения продуктов питания от гниения применяют стерилизацию, засолку, копчение, замораживание и др. Однако среди гнилостных бактерий есть спороносные, галофильные и психрофильные формы, формы, вызывающие порчу засоленных или замороженных продуктов.

Тема 1.2. Влияние условий внешней среды на микроорганизмы. Распространение микроорганизмов в природе.

Факторы, влияющие на микроорганизмы (температура, влажность, концентрация среды, излучения)

План

1. Влияние температуры: психрофильные, мезофильные и термофильные микроорганизмы. Микробиологические основы хранения пищевых продуктов в охлажденном и замороженном виде. Термоустойчивость вегетативных клеток и спор: пастеризация и стерилизация. Влияние тепловой обработки пищевых продуктов на микрофлору.

2. Влияние влажности продукта и окружающей среды на микроорганизмы. Значение относительной влажности воздуха для развития микроорганизмов на сухих продуктах.

3. Влияние концентрации растворенных веществ в среде обитания микроорганизмов. Влияние излучений, использование УФ-лучей для дезинфекции воздуха.

Влияние температуры: психрофильные, мезофильные и термофильные микроорганизмы. Микробиологические основы хранения пищевых продуктов в охлажденном и замороженном виде. Термоустойчивость вегетативных клеток и спор: пастеризация и стерилизация. Влияние тепловой обработки пищевых продуктов на микрофлору.

Температура - важнейший фактор для развития микроорганизмов. Для каждого из микроорганизмов существует минимум, оптимум и максимум температурного режима для роста. По этому свойству микробы подразделяются на три группы:

§ психрофилы - микроорганизмы, хорошо растущие при низких температурах с минимумом при -10-0 °С, оптимумом при 10-15 °С;

§ мезофилы - микроорганизмы, для которых оптимум роста наблюдается при 25-35 °С, минимум - при 5-10 °С, максимум - при 50-60 °С;

§ термофилы - микроорганизмы, хорошо растущие при относительно высоких температурах с оптимумом роста при 50-65 °С, максимумом - при температуре более 70 °С.

Большинство микроорганизмов относится к мезофилам, для развития которых оптимальной является температура 25-35 °С. Поэтому хранение пищевых продуктов при такой температуре приводит к быстрому размножению в них микроорганизмов и порче продуктов. Некоторые микробы при значительном накоплении в продуктах способны привести к пищевым отравлениям человека. Патогенные микроорганизмы, т.е. вызывающие инфекционные заболевания человека, также относятся к мезофилам.

Низкие температуры замедляют рост микроорганизмов, но не убивают их. В охлажденных пищевых продуктах рост микроорганизмов замедленно, но продолжается. При температуре ниже О °С большинство микробов прекращают размножаться, т.е. при замораживании продуктов рост микробов останавливается, некоторые из них постепенно отмирают. Установлено, что при температуре ниже О °С большинство микроорганизмов впадают в состояние, похожее на анабиоз, сохраняют свою жизнеспособность и при повышении температуры продолжают свое развитие. Это свойство микроорганизмов следует учитывать при хранении и дальнейшей кулинарной обработке пищевых продуктов. Например, в замороженном мясе могут длительно сохраняться сальмонеллы, а после размораживания мяса они в благоприятных условиях быстро накапливаются до опасного для человека количества.

При воздействии высокой температуры, превышающей максимум выносливости микроорганизмов, происходит их отмирание. Бактерии, не обладающие способностью образовывать споры, погибают при нагревании во влажной среде до 60-70 °С через 15-30 мин, до 80-100 °С - через несколько секунд или минут. У спор бактерий термоустойчивость значительно выше. Они способны выдерживать 100 °С в течение 1-6 ч, при температуре 120-130 °С споры бактерий во влажной среде погибают через 20-30 мин. Споры плесеней менее термостойки.

Тепловая кулинарная обработка пищевых продуктов в общественном питании, пастеризация и стерилизация продуктов в пищевой промышленности приводят к частичной или полной (стерилизация) гибели вегетативных клеток микроорганизмов.

При пастеризации пищевой продукт подвергается минимальному температурному воздействию. В зависимости от температурного режима различают низкую и высокую пастеризацию.

Низкая пастеризация проводится при температуре, не превышающей 65-80 °С, не менее 20 мин для большей гарантии безопасности продукта.

Высокая пастеризация представляет собой кратковременное (не более 1 мин) воздействие на пастеризуемый продукт температуры выше 90 °С, которая приводит к гибели патогенной неспороносной микрофлоры и в то же время не влечет за собой существенных изменений природных свойств пастеризуемых продуктов. Пастеризованные продукты не могут храниться без холода.

Стерилизация предусматривает освобождение продукта от всех форм микроорганизмов, в том числе и спор. Стерилизация баночных консервов проводится в специальных устройствах - автоклавах (под давлением пара) при температуре 110-125°С в течение 20-60 мин. Стерилизация обеспечивает возможность длительного хранения консервов. Молоко стерилизуется метолом ультравысокотемпературной обработки (при температуре выше 130 °С) в течение нескольких секунд, что позволяет сохранить все полезные свойства молока.

Гниение трупа (путрификация трупа, p utrefactio mortis ) – разложение органического вещества трупа под действием ферментных систем микроорганизмов с образованием конечных неорганических продуктов.
Характерными продуктами гниения являются вода, углекислый газ, аммиак, сероводород, летучие жирные кислоты (муравьиная, уксусная, масляная, валерьяновая и капроновая, а также изомеры трех последних кислот), фенол, крезол, индол, скатол, амины, триметиламин, альдегиды, спирты, пуриновые основания и т.д. Одни из этих веществ возникают в процессе гниения, другие содержатся в трупе, но при гниении их количество во много раз увеличивается. В гниении участвует достаточно большое число различных аэробных, факультативно-анаэробных и анаэробных спорообразующих и споронеобразующих бактерий.

При температуре хранения около 0 °С гниение в основном обусловливается жизнедеятельностью психрофильных бактерий, чаще всего рода псевдомонас. При повышенных температурах хранения гниение белков вызывают преимущественно мезофильные гнилостные микроорганизмы: неспорообразующие бактерии - палочка обыкновенного протея (Proteus vulgaris), чудесная палочка (Serratia marcescens), сенная палочка (Вас. subtilis), картофельная палочка (Вас. mesentericus), грибовидная палочка (Вас. mycoides) и другие аэробные бациллы; анаэробные клостридии - палочка спорогенес (Cl. sporogenes), палочка путрификус (Cl. putrificus) и палочка перфрингенс (Cl. perfringens). В процессах гниения могут также участвовать и плесневые грибы.

В большинстве случаев видовой состав бактериальной флоры, развивающейся при гниении в трупах, зависит от природы бактерий, находящихся в желудочно-кишечном тракте умершего.

Путрификация трупа является последовательным многостадийным процессом, каждый этап которого протекает с образованием определенного числа продуктов разложения, которые подвергаются дальнейшим последовательным превращениям.

Стадийность протекания процессов гниения обусловлена неодинаковой ферментативной активностью гнилостной микрофлоры по отношению к различным веществам. Легче поддаются действию микроорганизмов белки, находящиеся в растворенном состоянии, такие как белки крови и белки ликвора. Превращение продуктов распада белков происходит через промежуточные вещества с образованием конечных, дурно пахнущих продуктов гниения. В гнилостном распаде трупа могут как одновременно, так и последовательно участвовать различные микроорганизмы: прежде всего те, которые способны разрушать белковую молекулу, а затем микробы, ассимилирующие продукты распада белков.

В общей сложности, в результате путрификации трупов поэтапно может образовываться порядка 1300 различных соединений, чей химический состав зависит от времени разложения трупного материала, температуры, наличия влаги, доступа воздуха, бактериальной флоры, состава органов и тканей, подвергающихся разложению, а также от ряда других факторов.

Одним из первоначальных продуктов гнилостного распада белков являются пептоны (смеси пептидов), которые могут вызвать отравление при парентеральном введении. Пептиды разлагаются с образованием меркаптантов (тиоспиртов и тиофенолов), а также аминокислоты. Образующиеся при гидролизе пептонов свободные аминокислоты подвергаются дезаминированию, окислительному или восстановительному декарбоксилированию. При дезаминировании аминокислот образуются летучие жирные кислоты (капроновая, изокапроновая и др.), а при декарбоксилировании - различные токсичные органические основания - амины. Аминокислоты, содержащие серу, разлагаются с выделением метилмеркаптана, сероводорода и других сернистых соединений.

Наибольшую активность воздействия на белки оказывают аэробы – В. proteus, В. pyocyaneum, В. mesentericus, В. subtilis, стрептококки и стафилококки; анаэробы - Cl. putrificus, Cl. histolyticus, Cl. perfringens, Cl. Sporogenes, В. bifidus, acidofilus, В. butyricus… Аминокислоты расщепляют аэробы - В. faecalis alcaligenes, В. lactis aerogenes, В. aminoliticus, E. coli и др.

При гниении липопротеидов от них, прежде всего, отщепляется липидная часть. Составной частью лецитина, содержащегося в мышцах, а также в головном и спином мозге, является холин, который в процессе гниения превращается в триметиламин, диметиламин и метиламин. Триметиламин при окислении образует окись триметиламина, имеющую рыбный запах. Помимо этого, из холина при гниении трупа может образоваться ядовитое вещество нейрин.

При гнилостном разложении углеводов образуются органические кислоты, продукты их декарбоксилирования, альдегиды, кетоны, лактоны, оксид углерода.

Нуклеопротеиды при гниении разлагаются на белок и нуклеиновую кислоту, которая затем распадается на составные части, в результате чего образуются гипоксантин и ксантин - продукты разложения нуклеопротеидов.

Биогенные диамины, образующиеся в результате частичного разложения белков и декарбоксилирования их аминокислот и обладающие токсическим эффектом получили собирательное название «трупный яд». Органические основания (этилендиамин, кадаверин, путресцин, скатол, индол, этилендиамин и др.), образующиеся при гниении белка, также называют термином птомаины (от греческого - Πτώμα, означающего мертвое тело, труп).

Основными токсическими веществами из них являются путресцин и кадаверин, а также спермидин и спермин. Путресцин, 1,4 - тетраметилендиамин, H 2 N(CH 2) 4 NH 2 ; относится к группе биогенных аминов. Кристаллическое вещество с чрезвычайно неприятным запахом, t пл 27-28 °C. Впервые был обнаружен в продуктах гнилостного распада белков. Образуется при декарбоксилировании бактериями аминокислоты орнитина. В тканях организма путресцин - исходное соединение для синтеза двух физиологически активных полиаминов - спермидина и спермина. Эти вещества наряду с путресцином, кадаверином и другими диаминами входят в состав рибосом, участвуя в поддержании их структуры.

Кадаверин (от лат. cadaver - труп), α, ε-пентаметилендиамин - химическое соединение, имеющее формулу NH 2 (CH 2) 5 NH 2 . Название получил из-за присущего ему очень сильного трупного запаха. Представляет собой бесцветную жидкость с плотностью 0,870 г/см3 и t кип 178-179 °C. Кадаверин легко растворим в воде и спирте, даёт хорошо кристаллизующиеся соли. Замерзает при +9 °C. Содержится в продуктах гнилостного распада белков; образуется из лизина при его ферментативном декарбоксилировании. Обнаружен у растений. Искусственно кадаверин можно получать из триметиленцианида.

Спермин - химическое вещество класса алифатических полиаминов. Участвует в клеточном метаболизме, найден во всех эукариотических клетках, в живых организмах образуется из спермидина. Спермин впервые был выделен в 1678 г. из человеческой спермы Антони ван Левенгуком в виде кристаллической соли (фосфата). Название «спермин» впервые употребили немецкие химики Ладенбург и Абель в 1888 г. В настоящее время спермин обнаружен в разнообразных тканях большого числа организмов, является фактором роста у некоторых бактерий. При физиологическом pH существует в виде поликатиона.

Следует отметить, что токсичность химически чистых птомаинов по сравнению с действием непосредственно трупного материала невелика. В опытах на крысах токсическая доза кадаверина составляет 2000 мг/кг, путресцина - 2000 мг/кг, спермидина и спермина - 600 мг/кг.

Поэтому ядовитые свойства трупного материала объясняются действием некоторых примесей (бактериальных токсинов и ряда продуктов синтеза, образующихся в трупном материале под влиянием бактериальных ферментов) содержащихся наряду с полиаминами в гнилостном биологическом материале.

Гниение может происходить как при доступе кислорода к тканям трупа (аэробное гниение) и в его отсутствии (анаэробное гниение). Как правило, аэробный и анаэробный виды гниения развиваются одновременно, можно лишь говорить о преобладании того либо иного процесса.

В аэробных условиях распад белка протекает преимущественно с участием аэробных микроорганизмов (B. proteus vulgaris, B. subtilis, B. mesentericus, B. pyocyaneum, B. coli, Sarcina flava, Streptococcus pyogenes и др) и образованием множества промежуточных и конечных продуктов гниения. Аэробное гниение протекает относительно быстро, не сопровождается выделением большого количества жидкости и газов со специфическим зловонным запахом. Гниение под действием аэробных микроорганизмов при хорошем доступе кислорода происходит с более полным окислением. При этом аэробы жадно поглощают кислород и тем самым способствуют развитию анаэробов.

В анаэробных условиях образуется меньше продуктов гниения, но они обладают большей токсичностью. Анаэробные микроорганизмы (B. putrificus, B. perfringens и другие) вызывают сравнительно более медленное гниение, при котором окисление и разложение биологических соединений недостаточно полное, что сопровождается выделением большого количества жидкости и газов со зловонным запахом.

Помимо биохимических этапов, стадийность гниения трупа характеризуется также морфологическими, относительно постоянными, периодами развития.

В стандартных условиях гниение начинается уже через 3-4 часа после смерти, и на начальном этапе протекает незаметно. Бактериальная гнилостная флора, находящиеся в толстом кишечнике, активизируется, что приводит к образованию большого количества газов, и накоплению их в кишечнике и животе. Вздутие кишечника, увеличению объема живота и некоторое напряжение передней брюшной стенки пальпаторно можно отметить уже через 6-12 часов после смерти человека.

Образующиеся гнилостные газы, в состав которых входит сероводород, проникают через стенки кишечника и начинают распространяться по кровеносным сосудами. Соединяясь с гемоглобином крови и миоглобином мышц, сероводород образует соединения - сульфгемоглобин и сульфмиоглобин, придающие грязно-зеленый цвет внутренним органам и кожным покровам.

Первые внешние признаки гниения становятся заметными на передней брюшной стенке к концу 2- началу третьих суток после наступления смерти. Появляется грязно-зеленое окрашивание кожи, возникающие сначала в правой подвздошной области, а затем в левой. Обусловлено это тем, что толстый отдел кишечника непосредственно прилежит к передней брюшной стенке в подвздошных областях. Летом либо в теплых условиях грязно-зеленая окраска кожи в подвздошных областях может появиться на сутки раньше.

Рис. «Трупная зелень». Грязно-зеленое окрашивание кожи в подвздошных областях

Так как белки крови легко подвергаются гниению, то путрификация достаточно быстро распространяется по кровеносным сосудам на другие области тела. Гниение крови еще более усиливает ее гемолиз и увеличивает количество сульфгемоглобина, что приводит к появлению на кожных покровах ветвистого грязно-бурого или грязно-зеленого венозного рисунка - подкожной гнилостной венозной сети. Отчетливо различимые признаки гнилостной венозной сети отмечаются уже на 3-4 сутки после смерти.

Рис. Гнилостная венозная сеть

На 4 - 5 день вся передняя кожные покровы брюшной стенки и половых органов приобретают равномерный грязно-зеленый оттенок, развивается трупная зелень.

К концу 1-й - началу 2-й недели грязно-зелёное окрашивание охватывает значительную часть поверхности трупа.
В тоже время, в результате связывания образующегося при гниении сульфида водорода (H 2 S) с железом, выделяющимся вследствие гемолиза эритроцитов и распада гемоглобина, образуется сульфид железа (FeS), придающий черную окраску мягким тканям и паренхиме внутренних органов.

Окрашивание тканей трупа в черный цвет (трупный псевдомеланоз, pseud ome l anosis) происходит неравномерно и наиболее отчетливо видно в тех местах, в которых отмечается наибольшее скопление крови – в области трупных пятен и гипостазов.

Отмеченный порядок развития гнилостных проявлений при наружном осмотре наблюдается в большинстве случаев, однако, могут быть и исключения. Например, при смерти от механической асфиксии трупная зелень первоначально появляется не в подвздошных областях, а на голове и груди. Это обусловлено тем обстоятельством, что образующийся при асфиксии застой крови в верхней части тела способствует развитию гниения в указанных областях тела.

В процессе гниения на поверхности трупа начинают развиваться разнообразная кокковая и палочковая флора, в результате чего кожные его покровы ослизняются. Труп покрывается блестящей слизью, либо полусухой смазкой, похожей на жир желто-красного либо бурого цвета.

В случаях нахождения трупа в условиях низких температур и пониженной влажности на поверхности трупа может наблюдаться рост плесени. В отличие от гнилостных микроорганизмов плесени могут развиваться в кислой среде (рН 5,0-6,0), при сравнительно низкой влажности воздуха (75%) и низких температурах. Одни виды плесеней растут при температуре 1-2 °С, а другие при минус 8 °С и даже ниже.

Развиваются плесени довольно медленно, поэтому плесневение трупа преимущественно происходит при продолжительном его нахождении в отмеченных выше условиях либо в холодильной камере. Плесневые грибы являются аэробными микроорганизмами и, как правило, наиболее активно развиваются на тех участках трупа, на поверхности которых движение воздуха наиболее интенсивно, а также на более увлажненных участках (паховые и подмышечные складки и т.д.).

В зависимости от вида, плесень может расти в виде круглых, бархатистых колоний белого, темно-серо-коричневого или зеленовато-голубоватого, а также черного цвета, располагающихся на поверхности кожи либо проникающих в толщу мягких тканей на глубину до 1,0 см. Плесневение трупа встречается относительно нечасто, так как активно размножающиеся на поверхности трупа психрофильные аэробные бактерии обычно подавляют рост плесневых грибов.

Если труп некоторое время находился в морской воде, либо рядом со свежими морепродуктами, может наблюдаться слабое свечение поверхности трупа. Явление это достаточно редкое и обусловлено размножением на поверхности тела фотогенных (светящихся) бактерий, которые обладают способностью свечения – фосфоресценцией. Свечение обусловлено наличием в клетках светящихся бактерий фотогенного вещества (люциферина), которое окисляется кислородом при участии фермента люциферазы.

Фотогенные бактерии являются облигатными аэробами и обладают психрофильностью, они хорошо размножаются, но не вызывают изменений запаха, консистенции и других показателей трупа. К группе фотобактерий относят различные неспорообразующие грамотрицательные и грамположительные палочки, кокки и вибрионы. Типичный представитель фотогенных бактерий - фотобактериум фосфореум (Photobact. phosphoreum) - подвижная коккоподобная палочка.

По мере развития путрификации гнилостные газы образуются не только в кишечнике, но и в мягких тканях и внутренних органах трупа.

На 3-4 сутки развития гниения при пальпации кожи и мышц четко ощущается крепитация, отмечается нарастание скопления гнилостных газов в подкожно-жировой клетчатке и в других тканях - развивается трупная эмфизема. Прежде всего гнилостные газы появляются в жировой клетчатке, затем - в мышцах..

К конце второй недели развивается трупный гигантизм - проникновение газов в мягкие ткани приводит к увеличению объема трупа. У трупа резко увеличиваются в размерах части тела: живот, грудь, конечности, шея, у мужчин мошонка и половой член, у женщин молочные железы.

При гнилостных изменениях подкожножировой клетчатки резко меняются черты лица: она становится темно-зеленного либо фиолетового цвета, вздуто, веки набухают, глазные яблоки выступают из орбит, губы увеличиваются в размерах и выворачиваются наружу, язык увеличен в размерах выступает из-за рта. Из рта и носа выделяется грязно-красная сукровичная жидкость.

Рис. «Трупный гигантизм». Увеличение размеров трупа за счет развития гнилостной эмфиземы

Давление гнилостных газов в брюшной полости может быть достаточно значительным и достигать 1-2 атм., что приводит к развитию «посмертных родов» (могильные роды, partus post mortem ) - выдавливанию плода через родовые пути из матки трупа беременной женщины газами, образовавшимися в брюшной полости при гниении трупа. В результате скопления гнилостных газов в брюшной полости также могут наблюдаться выворот наружу из половых путей матки и выделение желудочного содержимого из ротовой полости («посмертная рвота» ).

Дальнейшее повышенное давление гнилостных газов в брюшной полости и постепенно уменьшающаяся прочность тканей передней брюшной стенки по мере развития гниения приводят к ее разрыву и эвентрации содержимого брюшной полости.

Из-за транссудации жидкости примерно к концу 1-й недели под эпидермисом формируются гнилостные пузыри, содержащие красновато-бурую зловонную сукровичную жидкость. Гнилостные пузыри легко разрываются, эпидермис отторгается, обнажая влажную, красноватую поверхность собственно кожи. Подобные проявления гниения имитируют ожоги кожи. Гнилостные изменения кожи вызывают выпадение или легкое отторжение волос.
На 6-10 сутки эпидермис полностью отслаивается и при незначительном механическом воздействии может быть легко удален вместе с ногтями и волосами.

Рис. Гнилостное отторжение кожи и ногтевых пластин

В дальнейшем через поврежденные участки кожи гнилостные газы выходят из трупа. Размеры трупа и его частей уменьшаются. Наблюдается размягчение ногтей, кожи и дальнейшее их отделение. Кожа становится желтоватого цвета, легко разрывается, покрывается сосочками, которые внешне схожи с песчинками и состоят из фосфорнокислой извести.

Спустя две недели из естественных отверстий трупа начинает выделяться красноватого цвета гнилостная жидкость (сукровица), которую не следует принимать за следы прижизненного кровотечения.

В дальнейшем кожные покровы трупа истончаются, становятся тонкими, грязно-желтого или оранжевого цвета с плесенью.

На третьей недели разложение трупа усиливается. Ткани становятся все более ослизлыми, легко разрываются. Мягкие части лица спадаются. Мышцы мягкие, начинается подсыхание клетчатки (высыхание начинается спереди и с боков). Мышцы глазных впадин омыляются или становятся зеленого цвета.

По мере прогрессирования гнилостного распада образование гнилостных газов прекращается, трупная эмфизема исчезает, объем трупа уменьшается. Процессы путрификации размягчают, дезорганизуют ткани - происходит так называемое гнилостное расплавление трупа.

Подкожная клетчатка частично омыляется, в результате высыхания и спадения клеток, растянутых ранее гнилостными газами, на разрезе имеет «скважистый» вид. Хрящи и связки желтеют, становятся дряблыми и легко растяжимыми. Мышцы становятся дряблыми и липкими, легко разрываются при незначительном растяжении, трансформируясь по мере путрификации в бесструктурную буро-черную массу либо пласты серо-желтого цвета с неразличимыми мышечными волокнами. Кости, особенно в тех местах, где они покрыты небольшим количеством мягких тканей, обнажаются, ребра легко отделяются от хрящей.

Гниение внутренних органов протекает неравномерно. Начинаясь с кишечника и живота, оно в первую очередь захватывает близлежащие органы брюшной полости (печень, поджелудочную железу и селезенку). Макроскопическая структура внутренних органов по мере гниения полностью утрачивается. Внутренние органы уменьшаются в объеме, при пальпации крепитируют, легко уплощаются, рвутся. Гнилостные газы разрушают структуру паренхимы, органы на разрезе приобретают «пенистый», «пористый» вид, изъятые кусочки органов плавают на поверхности воды за счет гнилостных газов.

Брюшина ослизняется, становится зеленого цвета. Слизистые оболочки желудка и кишечники становятся коричневато-фиолетового цвета, иногда с небольшими обесцвеченными участками. В некоторых случаях отмечается перфорация дна желудка с излитием желудочного содержимого в брюшную полость либо в левую плевральную полость. Однако данное явление не является следствием гниения, а происходит в результате трупного аутолиза. Гнилостный процесс в легких сопровождается появлением газовых, пузырьков в сосудах, в межуточной ткани и под плеврой.

Легкие темно-красного цвета и рыхлой консистенции, заполнены сукровичной жидкостью. Постепенно, по мере гниения, большая часть сукровицы скапливается в плевральных полостях.

Лимфатические узлы при гниении мягкие, могут быть разного цвета: буро-красного, зеленоватого, темно-коричневого, черного.

Сердце дряблое, стенки камер истончены, на разрезе миокард грязно красного цвета. На поверхности эндокарда и перикарда отмечаются маленькие белые гранулы известковых наложений. Перикард мацерирован, перикардиальная жидкость мутная, с хлопьевидным осадком. При трупном гемолизе с имбибицией кровяным пигментом тканей перикардиальная жидкость от примеси гемоглобина может стать буровато-красной.

Печень в процессе гниения размягчается, тускнеет, издает сильный аммиачный запах. Вначале нижняя поверхность печени, а затем и передняя и задняя приобретают черный цвет. На поверхности печени видны «песчанистые» сосочки из фосфорнокислой извести. В толще паренхимы образуются множественные пузырьки, заполненные гнилостными газами, что придает ткани печени на разрезе сотовый, пенистый вид. Происходящее во время гниения излитие и выход желчи за пределы желчного пузыря приводит к появлению желто-зеленного окрашивания нижнего края печени и рядом лежащих тканей и органов.

Поджелудочная железа рано подвергается гниению, в ходе которого она становится дряблой, с неразличимой структурой, в виде массы серого цвета.

Селезенка уменьшается в размерах, дряблая, пульпа селезенки превращается в красно-черную или зеленовато-черную, полужидкую, иногда пенистую, от присутствия газов, зловонную массу.

Вследствие топографической близости селезенки к толстой кишки в нее из кишечника уже в первые дни после смерти легко приникает сероводород, который соединяясь с железом гемоглобина, образует сернистое железо, которое окрашивает сначала прилегающую к кишке часть селезенки, а позднее весь орган в зеленовато-черный или голубовато-черный цвет.

Головной мозг полностью утрачивает свое анатомическое строение, граница серого и белого веществ становится неразличимой, его консистенция приобретает в начале кашицеобразное, а впоследствии полужидкое состояние. Позже, чем в других тканях, наступает гнилостный распад костного мозга. Это обусловлено поздним проникновением микроорганизмов в костный мозг трупа.

Наиболее устойчивыми к гниению являются сосуды, строма органов, небеременная матка простата и хрящи.

Полный гнилостный распад мягких тканей трупа при благоприятных для развития процессов путрификации условиях может произойти уже спустя 3-4 недели.

Гистологическое исследование при наличии гнилостных изменений имеет относительное значение. При умерено выраженном гниении в легких определяются «штампованные» альвеолы, видны очертания бронхов, угольный пигмент, в легочной паренхиме могут обнаруживаться Грам-положительные палочки, образующие фигуры в виде ниток и щеток.

Ткань печени в результате гнилостной трансформации быстро утрачивает свою гистологическую структуру, вследствие диффузии в паренхиму желчи и крови в ней обнаруживается много пигмента зеленовато-бурого цвета. Фолликулы селезенки при процессах трупного размягчения и гниения сохраняются лучше чем элементы пульпы. Даже при полном гнилостном распаде клеток пульпы ядра лимфоидных элементов фолликулов еще дают окраску. При фиксация селезенки в формалине в ней легко выпадает формалиновый пигмент, оседающий на клетках пульпы, что приводит к пигментации ткани селезенки, стромы и эритроцитов, что затрудняет микроскопические исследование.

Почки по сравнению с печенью более устойчивы к гниению, гистологически верифицируются по очертаниям клубочков и сосудов.

При микроскопическом исследовании гнилостно измененных лимфатических узлов обнаруживается исчезновение ядерной окраски лимфоидных элементов и их распад. Несколько дольше в лимфатических узлах сохраняются стромальные элементы.

Гниение мышечной ткани сопровождается изменением структуры мышечных волокон: их поперечная исчерченность сглаживается и исчезает, ядра слабо окрашиваются, наблюдается мелкозернистый распад, расхождение и полное разрушение мышечных волокон.

При незначительно выраженном гниении гистологическое исследование позволяет выявить некоторые патологические изменения, а при полном разрушении клеточных элементов провести дифференцировку органов по строению органной стромы и сосудов. Так, например, удается установить склеротические изменения и обызвествление крупных артериальных сосудов даже спустя несколько месяцев после смерти, иногда в гнилостно трансформированной паренхиме можно обнаружить обломки пороховых зерен. Однако, в большинстве случаев, при выраженной путрификации, микроскопическое изучение материала практически ничего не может добавить к данным макроскопического исследования.

При проведении судебно-химического исследования трупного материала, находящегося в состоянии гнилостной трансформации и интерпретации его результатов следует учитывать, что ряд веществ, образующихся в тканях трупов при гниении, могут давать такие же реакции, как и некоторые яды органического происхождения.

Это обстоятельство может существенно затруднять процесс обнаружения и количественного определения ядов при химико-токсикологическом анализе, а также быть причиной ошибочных заключении о наличии ядов в органах трупов.

Так, большой осторожности требует оценка содержания спиртов в гнилостно измененном биологическом материале.
Следует учитывать, что в результате жизнедеятельности целого ряда бактерий, принимающих участие в путрификации трупов, происходит окисление аминокислот и жиров с образованием спиртов, в смеси которых содержатся метиловый, этиловый и высшие спирты. Под влиянием ферментов кишечной палочки из глюкозы образуются различные количества пропилового, бутилового и метилового спиртов. Из лейцина образуется амиловый спирт, а из валина - изобутиловый.

Количественное содержание посмертно образующихся спиртов, как правило, незначительное и колеблется в пределах 0,5 промилле, однако изредка может достигать 1,0 промилле и более.

Исключение составляют те случаи, когда в трупном материале присутствует дрожжевая флора. При этом количество посмертно образовавшихся спиртов, в частности этилового, может достигать токсикологически значимых уровней.
В процессе гнилостного разложения трупов химическим изменениям подвергаются также и некоторые ядовитые вещества, вызвавшие отравление.

Скорость и интенсивность превращений ядовитых веществ в путрифицированном трупе зависит от ряда общих факторов, влияющих на процесс гниения, а также от химической природы ядов, палитры трупной бактериальной флоры, доступа воздуха, влаги, времени гниения, а также других условий.

Токсины органического происхождения в гниющих трупах подвергаются окислегнию, восстановлению, дезаминированию, десульфированию и другим превращениям, что приводит к их относительно быстрому разложению.

Наиболее быстро, уже через несколько суток или недель после наступления смерти, разлагаются сложные эфиры, однако некоторые ядовитые вещества (атропин, кокаин и др.), относящиеся к отмеченному классу соединений можно обнаружить в трупах через несколько месяцев или лет после смерти.

Неорганические ядовитые веществ в трупном материале сохраняются дольше, подвергаясь при гниении трупов реакциям восстановления. Ионы металлов в неорганических ядах, имеющие высшую валентность, восстанавливаются до ионов с низшей валентностью. Соединения мышьяка, фосфора, серы и других неметаллов могут восстанавливаться с образованием летучих соединений этих элементов с водородом.

Соединения мышьяка и таллия могут сохраняться в трупах около 8-9 лет, соединения бария и сурьмы - около 5 лет, соединения ртути сохраняются в трупах несколько месяцев. После этого неорганические яды проникают в почву и не всегда могут быть обнаружены в остатках гниющих или сгнивших трупов.

Несмотря на то, что общий биохимический характер гниения довольно постоянен, отдельные характеристики процесса путрификации достаточно лабильны и зависят от ряда факторов:

Условий внешней среды;
местонахождения трупа (на открытом воздухе, в воде, в земле);
антропометрических характеристик трупа;
характера имеющейся на трупе одежды;
возраста умершего;
наличия повреждений;
причины смерти;
принимавшихся перед смертью лекарственных препаратов;
состава микрофлоры и т.д.

Температура и влажность окружающей среды напрямую влияют на скорость гнилостной трансформации трупа. Наиболее оптимальные условия для жизнедеятельности гнилостных микроорганизмов возникают при температуре + 30 -37 °С, повышенной влажности и доступе кислорода воздуха. Гниение практически полностью прекращается при температуре тела умершего около 0 °С и свыше + 55 °С и резко замедляется в диапазоне от 0 °С до +10 °С, вследствие неблагоприятных температурных условий для размножения гнилостных микроорганизмов.

При соответствующих температурных и влажностных условиях в трупе возможно исключительно быстро развитие гнилостных микроорганизмов, что приводит к тому, что гниение по времени может опережать процесс аутолиза.
Если после смерти развивается процесс высыхания тканей (мумификация), то гниение постепенно замедляется, а затем и вовсе прекращается.

В условиях повышенной влажности (например, при пребывании трупа в воде) ход гниения резко замедляется, что объясняется пониженной концентрацией кислорода, и более низкой температурой. В сухой песчаной, хорошо вентилируемой почве гниение развивается быстрее, чем в плотной глинистой, с плохой вентиляцией почве. Трупы, захороненные в гробах и в одежде, подвергаются гниению более медленно, чем просто захороненные в земле и без одежды.

Описаны случаи практически полного отсутствия гнилостных изменений через длительный период времени после захоронения (до 53 лет) при пребывании трупа в металлических гробах (цинковый, свинцовый). Гниение трупа, находящегося в земле протекает в восемь раз медленнее, чем на воздухе.

На развитие гниения оказывают большое влияние индивидуальные особенности трупа.

Трупы детей подвергаются гнилостному разложению быстрее трупов взрослых лиц, в тоже время трупы новорожденных и мертворожденных гниют медленнее в связи с отсутствием гнилостной флоры.

В трупах полных людей гниение развивается быстрее, чем в трупах худых или истощенных.

Ускоренное гниение наблюдается, когда наступление смертельного исхода сопровождалось выраженной агонией, смерти, в случаях смерти от инфекционных заболеваний, при септических осложнениях, при обширных повреждениях кожных покровов, при перегревании (так называемые, тепловой или солнечный удары), а также при некоторых интоксикациях.

Замедление гниения отмечается при смерти от массивной кровопотери, при прижизненном приеме антибиотиков, сульфаниламидных и других антимикробных препаратов.

При расчленении, которое всегда сопровождается резким обескровливанием частей тела, замедление процессов гниения приводит к более длительному сохранению частей расчлененного трупа.

Гниение трупа в условиях его пребывания его в воде имеет свои отличительные черты. Гниение в водоеме с проточной водой происходит медленнее, чем в стоячей воде. При попадании трупа на дно водоема с большой глубиной, где температура воды. +4 °С и большое давление, процесс гниения может не развиться в течение многих месяцев.

При нахождении трупа на глубине водоема, его гниение протекает относительно медленно и равномерно. После двухнедельного нахождения в воде у трупа начинается выпадение волос, полностью же гидродепиляция завершается к концу месяца.

Гнилостные газы, накапливающиеся в тканях и полостях трупа, увеличивают его плавучесть, за счет чего происходит всплытие трупа на поверхность воды. Подъемная сила гнилостных газов настолько велика, что труп весом 60-70 кг может всплыть вместе с грузом массой порядка 30 кг. При температуре воды 23-25°С всплытие трупа на поверхность воды происходит на 3 сутки, при температуре воды 17-19°С всплытие трупа происходит на 7-12 сутки, в более холодной воде всплывание трупа происходит через 2-3 недели.

После всплытия трупа на поверхность воды, процесс гниения скачкообразно усиливается и идет неравномерно. Мягкие ткани лица вздуваются, становятся зелеными, в то время как другие части тела могут быть мало тронуты гниением. В дальнейшем резко вздувается все тело и труп обезображивается, резко вздувается живот, труп приобретает вид «гиганта», что может привести к ошибкам в опознании тела неизвестного лица. Особенно увеличивается в объеме мошонка, ткани которой под воздействием газов могут разрываться.

В теплое время извлеченные из воды трупы на воздухе очень быстро подвергаются разложению. В течение нескольких часов появляются признаки гниения - грязно-зеленая окраска кожи, гнилостная венозная сеть. В связи тем, что на развитие процессов путрификации оказывает влияние большое число факторов, которые не всегда возможно учесть в совокупности, судебно-медицинское определение давности наступления смерти по характеру и выраженности гнилостных изменений можно проводить только ориентировочно.

Гнилостные трансформации трупа вносят весьма ощутимые изменения в строение тканей и органов, уничтожая многие имевшиеся при жизни патологические изменения, однако судебно-медицинскую экспертизу трупов следует проводить независимо от степени гниения. Даже при выраженных гнилостных изменениях в ходе судебно-медицинского исследования возможно обнаружить повреждения и другие признаки, которые позволят установить причину смерти и решить другие вопросы, возникающие перед экспертом.

Врач судебно-медицинский эксперт, доцент кафедры судебной медицины Российского национального исследовательского медицинского университета им. Н.И. Пирогова Минздрва России, кандидат мед. наук, доцент Туманов Э.В. Туманов Э.В., Кильдюшов Е.М., Соколова З.Ю. Судебно-медицинская танатология - М.: ЮрИнфоЗдрав, 2011. - 172 с.

Читайте также: