Свойства двойных интегралов. Задача двойной интеграл определение основные свойства двойного интеграла Пользуясь определением двойного интеграла доказать что

Основные свойства двойного интеграла

Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

. Аддитивность . Если функция f (x , y ) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D 1 и D 2 , то функция f (x , y ) интегрируема в каждой из областей D 1 и D 2 , причем

. Линейное свойство . Если функции f (x , y ) и g (x , y ) интегрируемы в области D , а α и β - любые вещественные числа, то функция [α · f (x , y ) + β · g (x , y )] также интегрируема в области D , причем

. Если функции f (x , y ) и g (x , y ) интегрируемы в области D , то и произведение этих функций интегрируемо в D .

. Если функции f (x , y ) и g (x , y ) обе интегрируемы в области D и всюду в этой области f (x , y ) ≤ g (x , y ), то

. Если функция f (x , y ) интегрируема в области D , то и функция |f (x , y )| интегрируема в области D , причем

(Конечно, из интегрируемости |f (x , y )| в D не вытекает интегрируемость f (x , y ) в D .)

. Теорема о среднем значении . Если обе функции f (x , y ) и g (x , y ) интегрируемы в области D , функция g (x , y ) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f (x , y ) в области D , то найдется число μ , удовлетворяющее неравенству m μ M и такое, что справедлива формула

1.1 Определение двойного интеграла





1.2 Свойства двойного интеграла

Свойства двойного интеграла (и их вывод) аналогичны соответствующим свойствам однократного определенного интеграла.

1°. Аддитивность. Если функция f(x, y) интегрируема в области D и если область D при помощи кривой Г площади нуль разбивается на две связные и не имеющие общих внутренних точек области D 1 и D 2 , то функция f(x, y) интегрируема в каждой из областей D 1 и D 2 , причем

2°. Линейное свойство. Если функции f(x, y) и g(x, y) интегрируемы в области D, а? и? - любые вещественные числа, то функция [? · f(x, y) + ?· g(x, y)] также интегрируема в области D, причем

3°. Если функции f(x, y) и g(x, y) интегрируемы в области D, то и произведение этих функций интегрируемо в D.

4°. Если функции f(x, y) и g(x, y) обе интегрируемы в области D и всюду в этой области f(x, y) ? g(x, y), то

5°. Если функция f(x, y) интегрируема в области D, то и функция |f(x, y)| интегрируема в области D, причем

(Конечно, из интегрируемости |f(x, y)| в D не вытекает интегрируемость f(x, y) в D.)

6°. Теорема о среднем значении. Если обе функции f(x, y) и g(x, y) интегрируемы в области D, функция g(x, y) неотрицательна (неположительна) всюду в этой области, M и m - точная верхняя и точная нижняя грани функции f(x, y) в области D, то найдется число?, удовлетворяющее неравенству m ? ? ? M и такое, что справедлива формула

В частности, если функция f(x, y) непрерывна в D, а область D связна, то в этой области найдется такая точка (?, ?), что? = f(?, ?), и формула принимает вид

7°. Важное геометрическое свойство. равен площади области D

Пусть в пространстве дано тело T (рис. 2.1), ограниченное снизу областью D , сверху - графиком непрерывной и неотрицательной функции) z=f (x, y ,) которая определена в области D , с боков - цилиндрической поверхностью, направляющей которой является граница области D , а образующие параллельны оси Оz. Тело такого вида называется цилиндрическим телом.

1.3 Геометрическая интерпретация двойного интеграла






1.4 Понятие двойного интеграла для прямоугольника

Пусть произвольная функция f(x, y) определена всюду на прямоугольнике R = ? (см. Рис. 1).

Разобьем сегмент a ? x ? b на n частичных сегментов при помощи точек a = x 0 < x 1 < x 2 < ... < x n = b, а сегмент c ? y ? d на p частичных сегментов при помощи точек c = y 0 < y 1 < y 2 < ... < y p = d.

Этому разбиению при помощи прямых, параллельных осям Ox и Oy, соответствует разбиение прямоугольника R на n · p частичных прямоугольников R kl = ? (k = 1, 2, ..., n; l = 1, 2, ..., p). Указанное разбиение прямоугольника R обозначим символом T. В дальнейшем в этом разделе под термином "прямоугольник" будем понимать прямоугольник со сторонами, параллельными координатным осям.

На каждом частичном прямоугольнике R kl выберем произвольную точку (? k , ? l). Положив?x k = x k - x k-1 , ?y l = y l - y l-1 , обозначим через?R kl площадь прямоугольника R kl . Очевидно, ?R kl = ?x k ?y l .

называется интегральной суммой функции f(x, y), соответствующей данному разбиению T прямоугольника R и данному выбору промежуточных точек (? k , ? l) на частичных прямоугольниках разбиения T.

Диагональ будем называть диаметром прямоугольника R kl . Символом? обозначим наибольший из диаметров всех частичных прямоугольников R kl .

Число I называется пределом интегральных сумм (1) при? > 0, если для любого положительного числа? можно указать такое положительное число?, что при? < ? независимо от выбора точек (? k , ? l) на частичных прямоугольниках R выполняется равенство

| ? - I | < ?.

Функция f(x, y) называется интегрируемой (по Риману) на прямоугольнике R, если существует конечный предел I интегральных сумм этой функции при? > 0.

Указанный предел I называется двойным интегралом от функции f(x, y) по прямоугольнику R и обозначается одним из следующих символов:

Замечание. Точно также, как и для однократного определенного интеграла, устанавливается, что любая интегрируемая на прямоугольнике R функция f(x, y) является ограниченной на этом прямоугольнике.

Это дает основание рассматривать в дальнейшем лишь ограниченные функции f(x, y).

Свойства двойных интегралов.

Часть свойств двойных интегралов непосредственно вытекает из определения этого понятия и свойств интегральных сумм, а именно:

1. Если функция f(x, y) интегрируема в D , то kf(x, y) тоже интегрируема в этой области, причем (24.4)

2. Если в области D интегрируемы функции f(x, y) и g(x, y) , то в этой области интегрируемы и функции f(x, y) ± g(x, y) , и при этом

3. Если для интегрируемых в области D функций f(x, y) и g(x, y) выполняется неравенство f(x, y) g(x, y) , то

(24.6)

Докажем еще несколько свойств двойного интеграла :

4. Если область D разбита на две области D 1 и D 2 без общих внутренних точек и функция f(x, y) непрерывна в области D , то

(24.7) Доказательство . Интегральную сумму по области D можно представить в виде:

где разбиение области D проведено так, что граница между D 1 и D 2 состоит из границ частей разбиения. Переходя затем к пределу при , получим равенство (24.7).

5. В случае интегрируемости на D функции f(x, y) в этой области интегрируема и функция | f(x, y) | , и имеет место неравенство

(24.8)

Доказательство.

откуда с помощью предельного перехода при получаем неравенство (24.8)

6. где S D – площадь области D. Доказательство этого утверждения получим, подставляя в интегральную сумму f(x, y) ≡ 0.

7. Если интегрируемая в области D функция f(x, y) удовлетворяет неравенству

m ≤ f(x, y) ≤ M ,

то (24.9)

Доказательство.

Доказательство проводится предельным переходом из очевидного неравенства

Следствие.

Если разделить все части неравенства (24.9) на D , можно получить так называемую теорему о среднем:

В частности, при условии непрерывности функции f в D найдется такая точка этой области (х 0 , у 0 ), в которой f (х 0 , у 0 ) = μ , то есть

-

Еще одна формулировка теоремы о среднем.

Геометрический смысл двойного интеграла.

Рассмотрим тело V , ограниченное частью поверхности, задаваемой уравнением z = f(x, y), проекцией D этой поверхности на плоскость Оху и боковой цилиндрической поверхностью, полученной из вертикальных образующих, соединяющих точки границы поверхности с их проекциями.

z=f(x,y)


V


y P i D Рис.2.

Будем искать объем этого тела как предел суммы объемов цилиндров, основаниями которых являются части ΔS i области D , а высотами – отрезки длиной f (P i ), где точки P i принадлежат ΔS i . Переходя к пределу при , получим, что

(24.11)

то есть двойной интеграл представляет собой объем так называемого цилиндроида, ограниченного сверху поверхностью z = f(x, y) , а снизу – областью D .

Вычисление двойного интеграла путем сведения его к повторному.

Рассмотрим область D , ограниченную линиями x = a, x = b (a < b ), где φ 1 (х ) и φ 2 (х ) непрерывны на [a, b ]. Тогда любая прямая, параллельная координатной оси Оу и проходящая через внутреннюю точку области D , пересекает границу области в двух точках: N 1 и N 2 (рис.1). Назовем такую область правильной в на-

у правлении оси Оу . Аналогично определя-

y=φ 2 (x )ется область, правильная в направлении

N 2 оси Ох . Область, правильную в направле-

Нии обеих координатных осей, будем на-

D зывать просто правильной. Например,

правильная область изображена на рис.1.

y=φ 1 (x ) N 1

O a b x

Пусть функция f(x, y) непрерывна в области D . Рассмотрим выражение

, (24.12)

называемое двукратным интегралом от функции f(x, y) по области D . Вычислим вначале внутренний интеграл (стоящий в скобках) по переменной у , считая х постоянным. В результате получится непрерывная функция от х :

Полученную функцию проинтегрируем по х в пределах от а до b . В результате получим число

Докажем важное свойство двукратного интеграла.

Теорема 1. Если область D , правильная в направлении Оу , разбита на две области D 1 и D 2 прямой, параллельной оси Оу или оси Ох , то двукратный интеграл по области D будет равен сумме таких же интегралов по областям D 1 и D 2:

Доказательство.

а) Пусть прямая х = с разбивает D на D 1 и D 2 , правильные в направлении Оу . Тогда

+

+

б) Пусть прямая y = h разбивает D на правильные в направлении Оу области D 1 и D 2 (рис.2). Обозначим через M 1 (a 1 , h ) и M 2 (b 1 , h ) точки пересечения прямой y = h с гра-ницей L области D .

y Область D 1 ограничена непрерывными линиями

y=φ 2 (x ) 1) y = φ 1 (x );

D 2 2) кривой А 1 М 1 М 2 В , уравнение которой запишем

h M 1 M 2 y = φ 1 *(x ), где φ 1 *(х ) = φ 2 (х ) при а ≤ х ≤ а 1 и

A 1 D 1 B b 1 ≤ x ≤ b , φ 1 *(х ) = h при а 1 ≤ х ≤ b 1 ;

3) прямыми x = a , x = b .

Область D 2 ограничена линиями y = φ 1 *(x ),

A у = φ 2 (х ), а 1 ≤ х ≤ b 1 .

y=φ 1 (x ) Применим к внутреннему интегралу теорему о

разбиении промежутка интегрирования:

O a a 1 b 1 b

+

Представим второй из полученных интегралов в виде суммы:

+ + .

Поскольку φ 1 *(х ) = φ 2 (х ) при а ≤ х ≤ а 1 и b 1 ≤ x ≤ b , первый и третий из полученных интегралов тождественно равны нулю. Следовательно,

I D = , то есть .

Двойные интегралы. Определение двойного интеграла и его свойства. Повторные интегралы. Сведение двойных интегралов к повторным. Расстановка пределов интегрирования. Вычисление двойных интегралов в декартовой системе координат.

1. ДВОЙНЫЕ ИНТЕГРАЛЫ

1.1. Определение двойного интеграла

Двойной интеграл представляет собой обобщение понятия определенного интеграла на случай функции двух переменных. В этом случае вместо отрезка интегрирования будет присутствовать какая-то плоская фигура.

Пусть D – некоторая замкнутая ограниченная область, а f (x , y ) – произвольная функция, определенная и ограниченная в этой области. Будем предполагать, что границы области D состоят из конечного числа кривых, заданных уравнениями вида y =f (x ) или x =g(y ), где f (x ) и g (y ) – непрерывные функции.

Р

Рис. 1.1

азобьем область D произвольным образом на n частей. Площадь i -го участка обозначим символом s i . На каждом участке произвольно выберем какую-либо точку P i , и пусть она в какой-либо фиксированной декартовой системе имеет координаты (x i , y i ). Составим интегральную сумму для функции f (x , y ) по области D , для этого найдем значения функции во всех точках P i , умножим их на площади соответствующих участков s i и просуммируем все полученные результаты:

. (1.1)

Назовем диаметром diam (G ) области G наибольшее расстояние между граничными точками этой области.

Двойным интегралом функции f (x , y ) по области D называется предел, к которому стремится последовательность интегральных сумм (1.1) при неограниченном увеличении числа разбиений n (при этом
). Это записывают следующим образом

. (1.2)

Заметим, что, вообще говоря, интегральная сумма для заданной функции и заданной области интегрирования зависит от способа разбиения области D и выбора точек P i . Однако если двойной интеграл существует, то это означает, что предел соответствующих интегральных сумм уже не зависит от указанных факторов. Для того чтобы двойной интеграл существовал (или, как говорят, чтобы функция f (x , y ) была интегрируемой в области D ), достаточно чтобы подынтегральная функция была непрерывной в заданной области интегрирования .

П

Рис. 1.2

усть функция f (x , y ) интегрируема в области D . Поскольку предел соответствующих интегральных сумм для таких функций не зависит от способа разбиения области интегрирования, то разбиение можно производить при помощи верти­кальных и горизонтальных линий. Тогда большинство участков области D будет иметь прямоугольный вид, площадь которых равна s i =x i y i . Поэтому дифференциал площади можно записать в виде ds = dxdy . Следовательно, в декартовой системе координат двойные интегралы можно записывать в виде

. (1.3)

Замечание . Если подынтегральная функция f (x , y )1, то двойной интеграл будет равен площади области интегрирования:

. (1.4)

Отметим, что двойные интегралы обладают такими же свойствами, что и определенные интегралы. Отметим некоторые из них.

Свойства двойных интегралов.

1 0 . Линейное свойство. Интеграл от суммы функций равен сумме интегралов :

и постоянный множитель можно выносить за знак интеграла :

.

2 0 . Аддитивное свойство. Если область интегрирования D разбить на две части, то двойной интеграл будет равен сумме интегралов по каждой этой части :

.

3 0 . Теорема о среднем. Если функция f(x , y ) непрерывна в области D , то в этой области найдется такая точка (), что :

.

Далее возникает вопрос: как вычисляются двойные интегралы? Его можно вычислить приближенно, с этой целью это разработаны эффективные методы составления соответствующих интегральных сумм, которые затем вычисляются численно при помощи ЭВМ. При аналитическом вычислении двойных интегралов их сводят к двум определенным интегралам.

1.2. Повторные интегралы

Повторными интегралами называются интегралы вида

. (1.5)

В этом выражении сначала вычисляется внутренний интеграл, т.е. производится сначала интегрирование по переменной y (при этом переменная x считается постоянной величиной). В результате интегрирования по y получится некоторая функция по x :

.

Затем полученную функцию интегрируют по x :

.

Пример 1.1. Вычислить интегралы:

а)
, б)
.

Решение . а) Произведем интегрирование по y , считая, что переменная x = const . После этого вычисляем интеграл по x :

.

б) Так как во внутреннем интеграле интегрирование производится по переменной x , то y 3 можно вынести во внешний интеграл как постоянный множитель. Поскольку y 2 во внутреннем интеграле считается постоянной величиной, то этот интеграл будет табличным. Производя последовательно интегрирование по y и x , получаем

Между двойными и повторными интегралами существует взаимосвязь, но сначала рассмотрим простые и сложные области. Область называется простой в каком-либо направлении, если любая прямая, проведенная в этом направлении, пересекает границу области не более чем в двух точках. В декартовой системе координат обычно рассматривают направления вдоль осей Ox и Oy . Если область является простой в обоих направлениях, то говорят коротко – простая область, без выделения направления. Если область не является простой, то говорят, что она сложная .

Л

а б

Рис. 1.4
юбую сложную область можно представить в виде суммы простых областей. Соответственно, любой двойной интеграл можно представить в виде суммы двойных интегралов по простым областям. Поэтому в дальнейшем мы будем рассматривать, в основном, только интегралы по простым областям.

Теорема . Если область интегрирования D – простая в направлении оси Oy (см. рис.1.4а), то двойной интеграл можно записать в виде повторного следующим образом:

; (1.6)

если область интегрирования D – простая в направлении оси Ox (см. рис.1.4б), то двойной интеграл можно записать в виде повторного следующим образом:

. (1.7)

Е

Рис. 1.3

сли область интегрирования является правильной в обоих направлениях, то можно произвольно выбирать вид повторного интеграла, в зависимости от простоты интегрирования.

1.3. РАССТАНОВКА ПРЕДЕЛОВ ИНТЕГРИРОВАНИЯ

1.3.1. Прямоугольная область интегрирования

П

Рис. 1.5

ри сведении двойных интегралов к повторным, основная трудность возникает при расстановке пределов во внутренних интегралах. Наиболее просто это сделать для прямоугольных областей (см. рис. 1.5).

Пример 1.2. Вычислить двойной интеграл

.

Решение . Запишем двойной интеграл в виде повторного:

.

1.3.2. Произвольная область интегрирования

Для того, чтобы перейти от двойного интеграла к повторному следует:

    построить область интегрирования ;

    расставить пределы в интегралах, при этом следует помнить, что пределы внешнего интеграла должны быть постоянными величинами (т.е. числами) независимо от того, по какой переменной вычисляется внешний интеграл .

Пример 1.3. Расставить пределы интегрирования в соответствующих повторных интегралах для двойного интеграла

, если а)
б)

Р

Рис. 1.6

ешение . а) Изобразим область интегрирования D (см. рис.1.6). Пусть интегрирование во внешнем интеграле производится по переменной x , а во внутреннем – по y . Расстановку пределов всегда нужно начинать с внешнего интеграла , в данном случае с переменной x . Из рисунка видно, что x изменяется от 0 до 1, при этом значения переменной y будут изменяться от значений на прямой y = x до значений на прямой y =2x . Таким образом, получаем

.

Пусть теперь интегрирование во внешнем интеграле производится по y , а во внутреннем – по x . В этом случае значения y будут изменяться от 0 до 2. Однако тогда верхняя граница изменений значений переменной x будет состоять из двух участков x = y /2 и x =1. Это означает, что область интегрирования нужно разбить на две части прямой y =1. Тогда в первой области y изменяется от 0 до 1, а x от прямой x = y /2 до прямой x = y . Во второй области y изменяется от 1 до 2, а x – от прямой x = y /2 до прямой x =1. В результате получим

.

б

Рис. 1.7

)
Построим область интегрирования D (см. рис.1.7). Пусть во внешнем интеграле интегрирование производится по x , а во внутреннем – по y . В этом случае при изменении x от –1 до 1 изменения переменной y сверху будут ограничены двумя линиями: окружностью и прямой. На отрезке [–1;0] y изменяется от y =0 до
; на отрезке переменная y изменяется от y =0 до y =1–x . Таким образом,

.

Пусть теперь во внешнем интеграле интегрирование производится по y , а во внутреннем – по x . В этом случае y будет изменяться от 0 до 1, а переменная x – от дуги окружности
до прямой x =1–y . В результате получим

.

Данные примеры показывают, как важно правильно выбирать порядок интегрирования.

Пример 1.4. Изменить порядок интегрирования

а)
; б)
.

Р

Рис. 1.8

ешение . а) Построим область интегрирования. На отрезке для x переменная y изменяется от прямой y =0 до прямой y = x . В результате получается следующая область интегрирования (см. рис.1.8). На основании построенного рисунка, расставляем пределы интегрирования

.

б) Построим область интегрирования. На отрезке для y переменная x изменяется от прямой x =y до параболы
; на отрезке – от прямой x =y до прямой x = 3/4. В результате получается следующая область интегрирования (см. рис.1.9). На основании построенного рисунка, расставляем пределы интегрирования,

.

Читайте также: