Решение системы линейных уравнений с тремя неизвестными методом крамера. Решение системы линейных уравнений с тремя неизвестными методом крамера Решить систему с 3 неизвестными

Система трех линейных уравнений с тремя неизвестными имеет вид:

где aij- коэффициенты при неизвестных х, у и z, индексы: i = 1,2,3 - определяют номер уравнения и j = 1,2,3 - номер неизвестного.

Определение: Решением системы уравнений (3) называется тройка чисел (х0,у0,z0), при подстановке которой в эту систему все уравнения обращаются в верные числовые тождества.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ РЕШЕНИЯ СИСТЕМЫ уравнений с тремя неизвестными

Геометрически система уравнений (3) задает 3 плоскости в пространстве.

При этом возможны 3 случая:

  • 1) плоскости пересекаются в единой точке с координатами (x0,y0,z0), система в этом случае имеет единственное решение - она совместна и определена;
  • 2) плоскости совпадают друг с другом - система имеет бесконечное множество решений, т.е. она совместна, но не определена;
  • 3) плоскости параллельны друг другу и общих точек пересечения не имеют - система несовместна и решений не имеет.

Данную систему (3) можно решить методом Крамера с помощью определителей третьего порядка.

Введем понятие матрицы и определителя третьего порядка.

МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ ТРЕТЬЕГО ПОРЯДКА

Определение: Квадратной матрицей 3 -го порядка называется таблица чисел, которая состоит из 3-х строк и 3-х столбцов и обозначается:

где аi,j - называются элементами матрицы, индексы: i = 1, 2, 3 - определяет номер; строки, j = 1, 2, 3 - номер столбца. Элементы а11а22а33 образуют главную диагональ матрицы, а элементы а13а22а31 образуют побочную диагональ матрицы.

Каждая матрица характеризуется своим определителем.

Определение: Определителем матрицы 3-го порядка называется число, которое вычисляется методом диагоналей - как разность суммы произведений элементов главных диагоналей и суммы произведений элементов побочных диагоналей.

Определитель 3-го порядка обозначается и вычисляется по следующей схеме:


Существует другой, универсальный способ вычисления определителей 3-го порядка, который называется методом разложения и реализуется по следующей схеме:

Данная формула называется формулой разложения по элементам 1-ой строки. Эта формула позволяет вычисление определителя 3-го порядка свести к вычислению определителей 2-го порядка.

Для раскрытия сущности этой формулы введем два понятия - минора и алгебраического дополнения.

Определение: Минором Мij элемента aij определителя 3-го порядка называется определитель 2-го порядка, полученный путем вычеркивания i - строки и j - столбца, на пересечении которых стоит данный элемент.

Так, для a11 соответствует минор M11 =, для a12 - минор M12=, а для а13- минор M13 =.

Определение: Алгебраическим дополнением Аij элемента aij называется его минор Мij, взятый со знаком +, если сумма номеров строки и столбца, в которых стоит элемент, четная и со знаком - , если эта сумма нечетная, т.е.: Aij = (-1)i+jMij.

Например: A11 = (-1)1+1M11 = M11; A12 = (-1)1+2M12 = -M12; A13 = (-1)1+3 M13 = M13.

Схема чередования знаков миноров для соответствующих элементов матрицы: .

Исходя из этих понятий, формулу разложения по элементам 1-ой строки при вычислении определителя 3-го порядка можно записать так:

Определитель может быть разложен по любой строке или столбцу и равен сумме произведений элементов любой строки или столбца на их алгебраические дополнения. Этот способ вычисления определителей называется методом разложения. Он универсален и применим для определителей любого порядка.

Перейдем к решению системы линейных уравнений с тремя неизвестными методом Крамера.

Систему: (3) путем последовательного исключения неизвестных х, у и z можно привести к равносильной (эквивалентной) системе (4), имеющей одинаковые решения с исходной системой (3): (4), где - определитель системы, - определители неизвестных x, y, z, которые получаются из определителя системы путем замены столбца коэффициентов при неизвестном на столбец свободных членов.

При решении системы (4) возможны 3 случая при выполнении следующих условий:

Если определитель системы, то, поделив обе части уравнений системы на, найдем неизвестные по формулам Крамера:

При первом условии система имеет единственное решение, она совместна и определена. Три плоскости пересекаются в одной точке с координатами (х0, у0, z0).

1. Если определитель системы и все определители неизвестных, то имеем и при любых значениях x, y и z имеем верное тождество.

При втором условии система имеет бесконечное множество решений, она совместна, но не определена. Плоскости совпадают друг с другом.

2. Если определитель системы, а определители неизвестных могут быть или или, то имеем:, что невозможно при любых значениях х и у.

При третьем условии система решения не имеет, она не совместна. Плоскости параллельны друг другу и общих точек не имеют.

Метод решения системы линейных уравнений с помощью определителей называется методом Крамера.

Пример. Решить систему линейных уравнений методом Крамера:

  • 1) Вычислим определители системы и неизвестных, х, у и z.
  • а) методом разложения по 1-ой строке:

б) методом диагоналей:

2) Найдем решение системы по формулам Крамера:

х0 ; у0 = z0 =

Проверка: (верно).

Ответ: (х0=0, у0= -1, z0=2)-точка пересечения плоскостей.

Для системы составляем главный определитель

и вычисляем его.

Затем составляем дополнительные определители



и вычисляем их.

По правилу Крамера решение системы находят по формулам

;
;
,если

1)

Вычислим:

По формулам Крамера находим:

Ответ: (1; 2; 3)

2)

Вычислим:

Так как главный определитель
, а хотя бы один дополнительный не равен нулю (в нашем случае
), то решения у системы нет.

3)

Вычислим:




Так как все определители равны нулю, то система имеет бесконечное множество решений, которое можно найти так

Решите самостоятельно системы:

а)
б)

Ответ: а) (1; 2; 5) б) ;;

Практическое занятие № 3 на тему:

Скалярное произведение двух векторов и его приложение

1. Если дан
и
, то скалярное произведение находим по формуле:


2.Если, то скалярное произведение этих двух векторов находим по формуле

1. Даны два вектора
и

Их скалярное произведение находим так:

.

2. Даны два вектора:

={2;3;–4}
={1; –5; 6}

скалярное произведение находят так:

3.
,

3.1 Нахождение работы постоянной силы на прямолинейном участке пути

1) Под действием силы в 15Н тело переместилось по прямой на 2 метра. Угол между силой и направлением перемещения =60 0 . Вычислить работу силы по перемещению тела.

Дано:

Решение:

2) Дано:

Решение:

3) Из точки М(1; 2; 3) в точку N(5; 4; 6) переместилось тело под действием силы 60Н. Угол между направлением силы и вектором перемещения =45 0 . Вычислить работу, совершаемую этой силой.

Решение: находим вектор перемещения

Находим модуль вектора перемещения:

По формуле
находим работу:

3.2 Определение ортогональности двух векторов

Два вектора ортогональны, если
, то есть

так как

1)


–не ортогональны

2)


–ортогональны

3) Определить, при каком  векторы
и
взаимно-ортогональны.

Так как
, то
, значит

Решите самостоятельно:

а)

. Найти их скалярное произведение.

б) Вычислить, какую работу производит сила
, если точка ее приложения, двигаясь прямолинейно, переместилась из точки M (5; -6; 1) в точку N (1; -2; 3)

в) Определить, ортогональны ли вектора
и

Ответы: а) 1 б) 16 в) да

3.3.Нахождение угла между векторами

1)

. Найти .

Находим

подставляем в формулу:


.

1). Даны вершины треугольника А(3; 2; –3), В(5; 1; –1), С(1; –2; 1). Найти угол при вершине А.

Подставим в формулу:

Решите самостоятельно:

Даны вершины треугольника А(3; 5; -2), В(5; 7; -1), С(4; 3; 0). Определить внутренний угол при вершине А.

Ответ: 90 о

Практическое занятие № 4 на тему:

ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ДВУХ ВЕКТОРОВ И ЕГО ПРИЛОЖЕНИЕ.

Формула для нахождения векторного произведения двух векторов:

имеет вид

1) Найти модуль векторного произведения:


Составим определитель и вычислим его (по правилу Саррюса или по теореме о разложении определителя по элементам первой строки).

1-ый способ: по правилу Саррюса

2-й способ: разложим определитель по элементам первой строки.

2) Найти модуль векторного произведения:

4.1. ВЫЧИСЛЕНИЕ ПЛОЩАДИ ПАРАЛЛЕЛОГРАММА, ПОСТРОЕННОГО НА ДВУХ ВЕКТОРАХ.

1) Вычислить площадь параллелограмма, построенного на векторах

2). Найти векторное произведение и его модуль

4.2. ВЫЧИСЛЕНИЕ ПЛОЩАДИ ТРЕУГОЛЬНИКА

Пример: даны вершины треугольника А(1; 0; -1), В(1; 2; 0), С(3; -1; 1). Вычислить площадь треугольника.

Сначала найдем координаты двух векторов, выходящих из одной вершины.

Найдем их векторное произведение

4.3. ОПРЕДЕЛЕНИЕ КОЛЛИНЕАРНОСТИ ДВУХ ВЕКТОРОВ

Если вектора
и
коллинеарны, то

, т. е. координаты векторов должны быть пропорциональны.

а) Даны вектора::
,
.

Они коллинеарны потому, что
и

после сокращения каждой дроби получается соотношение

б) Даны вектора:

.

Они не коллинеарны, потому, что
или

Решите самостоятельно:

а) При каких значениях m и n вектора
коллинеарны?

Ответ:
;

б) Найти векторное произведение и его модуль
,
.

Ответ:
,
.

Практическое занятие № 5 на тему:

ПРЯМАЯ ЛИНИЯ НА ПЛОСКОСТИ

Задача № 1. Найти уравнение прямой, проходящей через точку А(-2; 3) параллельно прямой

1. Найдем угловой коэффициент прямой
.

- это уравнение прямой с угловым коэффициентом и начальной ординатой (
). Поэтому
.

2. Так как прямые MN и АС параллельны, то их угловые коэффициенты равны, т.е.
.

3. Для нахождения уравнения прямой АС воспользуемся уравнением прямой, проходящей через точку с данным угловым коэффициентом:

. В эту формулу вместо и подставим координаты точки А(-2; 3), вместо подставим – 3. В результате подстановки получим:

Ответ:

Задача №2. Найти уравнение прямой, проходящей через точку К(1; –2) параллельно прямой .

1. Найдем угловой коэффициент прямой .

Это общее уравнение прямой, которое в общем виде задается формулой . Сравнивая уравнения и находим, что А = 2, В = –3. Угловой коэффициент прямой, заданной уравнением , находится по формуле
. Подставив в эту формулу А = 2 и В = –3, получим угловой коэффициент прямой MN. Итак,
.

2. Так как прямые MN и КС параллельны, то их угловые коэффициенты равны:
.

3. Для нахождения уравнения прямой КС воспользуемся формулой уравнения прямой, проходящей через точку с данным угловым коэффициентом
. В эту формулу вместо и подставим координаты точки К(–2; 3), вместо

Задача № 3. Найти уравнение прямой, проходящей через точку К(–1; –3) перпендикулярно прямой .

1. – это общее уравнение прямой, которое в общем виде задается формулой .

и находим, что А = 3, В = 4.

Угловой коэффициент прямой, заданной уравнением , находится по формуле:
. Подставив в эту формулу А = 3 и В = 4, получим угловой коэффициент прямой MN:
.

2. Так как прямые MN и КD перпендикулярны, то их угловые коэффициенты обратно пропорциональны и противоположны по знаку:

.

3. Для нахождения уравнения прямой КD воспользуемся формулой уравнения прямой, проходящей через точку с данным угловым коэффициентом

. В эту формулу вместо и подставим координаты точки К(–1; –3), вместо подставим . В результате подстановки получим:

Решите самостоятельно:

1. Найти уравнение прямой, проходящей через точку К(–4; 1) параллельно прямой
.

Ответ:
.

2. Найти уравнение прямой, проходящей через точку К(5; –2) параллельно прямой
.

3. Найти уравнение прямой, проходящей через точку К(–2; –6) перпендикулярно прямой
.

4. Найти уравнение прямой, проходящей через точку К(7; –2) перпендикулярно прямой
.

Ответ:
.

5. Найти уравнение перпендикуляра, опущенного из точки К(–6; 7) на прямую
.

Задача 1

Решить систему линейных уравнений двумя способами: по формулам Крамера и методом Гаусса

1) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Крамера

Определитель системы D не равен нулю. Найдем вспомогательные определители D 1 , D 2 , D 3 , если они не равны нулю, то решений нет, если равны, то решений бесконечное множество


Система 3 линейных уравнений с 3 неизвестными, определитель которой отличен от нуля, всегда совместна и имеет единственное решение, вычисляемое по формулам:

Ответ: получили решение:

2) решим неоднородную систему линейных алгебраических уравнений Ах = В методом Гаусса

Составим расширенную матрицу системы

Примем первую строку за направляющую, а элемент а 11 = 1 – за направляющий. С помощью направляющей строки получим нули в первом столбце.

соответствует множество решений системы линейных уравнений

Ответ: получили решение:

Задача 2

Даны координаты вершин треугольника АВС

Найти:

1) длину стороны АВ;

4) уравнение медианы АЕ;

Построить заданный треугольник и все линии в системе координат.

А(1; -1), В(4; 3). С(5; 1).

1) Расстояние между точками А(х 1 ; у 1 ) и В(х 2 ; у 2 ) определяется по формуле

воспользовавшись которой находим длину стороны АВ;

2) уравнения сторон АВ и ВС и их угловые коэффициенты;

Уравнение прямой, проходящей через две заданные точки плоскости А(х 1 ; у 1 ) и В(х 2 ; у 2 ) имеет вид

Подставляя в (2) координаты точек А и В, получаем уравнение стороны АВ:

Угловой коэффициент k АВ прямой АВ найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b .

, то есть откуда

Аналогично получим уравнение прямой ВС и найдем ее угловой коэффициент.

Подставляя в (2) координаты точек В и С, получаем уравнение стороны ВС:

Угловой коэффициент k ВС прямой ВС найдем, преобразовав полученное уравнение к виду уравнения прямой с угловым коэффициентом у = kx - b .

, то есть

3) внутренний угол при вершине В в радианах с точностью до 0,01

Для нахождения внутреннего угла нашего треугольника воспользуемся формулой:

Отметим, что порядок вычисления разности угловых коэффициентов, стоящих в числителе этой дроби, зависит от взаимного расположения прямых АВ и ВС.

Подставив ранее вычисленные значения k ВС и k АВ в (3), находим:

Теперь, воспользовавшись таблицами инженерным микрокалькулятором, получаем В » 1,11 рад.

4) уравнение медианы АЕ;

Для составления уравнения медианы АЕ найдем сначала координаты точки Е, которая лежит на середине отрезка ВС

Подставив в уравнение (2) координаты точек А и Е, получаем уравнение медианы:


5) уравнение и длину высоты CD;

Для составления уравнения высоты CD воспользуемся уравнением прямой, проходящей через заданную точку М(х 0 ; у 0 )с заданным угловым коэффициентом k , которое имеет вид

и условием перпендикулярности прямых АВ и CD, которое выражается соотношением k AB k CD = -1, откуда k CD = -1/k AB = - 3/4

Подставив в (4) вместо k значение k С D = -3/4, а вместо x 0 , y 0 ответствующие координаты точки С, получим уравнение высоты CD

Для вычисления длины высоты СD воспользуемся формулой отыскания расстояния d от заданной точки М(х 0 ; у 0 ) до заданной прямой с уравнением Ax+ By + С = 0 , которая имеет вид:

Подставив в (5) вместо х 0 ; у 0 координаты точки С, а вместо А, В, С коэффициенты уравнения прямой АВ, получаем

6) уравнение прямой, проходящей через точку Е параллельно стороне АВ и точку М ее пересечения с высотой CD;

Так как искомая прямая EF параллельна прямой АВ, то k EF = k AB = 4/3. Подставив в уравнение (4) вместо х 0 ; у 0 координаты точки Е, а вместо k значение k EF получаем уравнение прямой EF".

Для отыскания координат точки М решаем совместно уравнения прямых EF и CD.

Таким образом, М(5,48; 0,64).

7) уравнение окружности с центром в точке Е, проходящей через вершину В

Поскольку окружность имеет центр в точке Е(4,5; 2) и проходит через вершину В(4; 3), то ее радиус

Каноническое уравнение окружности радиуса R с центром в точке М 0 (х 0 ; у 0 ) имеет вид

Треугольник АВС, высота СD, медиана AE, прямая EF , точка M и окружность построенная в системе координат x0у на рис.1.

Задача 3

Составить уравнение линии, для каждой точки которой ее расстояние до точки А (2; 5) равно расстоянию до прямой у = 1. Полученную кривую построить в системе координат

Решение

Пусть М (x , у ) - текущая точка искомой кривой. Опустим из точки М перпендикуляр MB на прямую у = 1 (рис.2). Тогда В(х; 1). Так как МА = MB , то

Система линейных уравнений имеет вид

где - коэффициенты; - свободные члены; - неизвестные величины.

Решением этой системы называется совокупность чисел которые, будучи подставлены вместо неизвестных в уравнения, обращают эти уравнения в тождества. Система уравнений называется совместной, если она имеет хотя бы одно решение. Если же система не имеет ни одного решения, то она называется несовместной.

Совместная система называется определенной, если она имеет только одно решение, и неопределенной, если она имеет более одного решения.

называются соответственно матрицей и расширенной матрицей системы (2).

Теорема Кронекера-Капелли. Для совместности системы (2) необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу расширенной матрицы:

Правило Крамера. Если ранг матрицы совместной системы равен числу ее неизвестных, то система является определенной. Если число неизвестных системы (2) совпадает с числом уравнений и матрица системы невырожденная то система имеет единственное решение, которое находится по правилу Крамера:

В этих формулах - определитель системы, а - определитель, полученный из определителя системы заменой столбца столбцом свободных членов

Матричное решение системы. Система линейных уравнений (2) может быть записана в матричной форме

где А - матрица системы; X - матрица-столбец неизвестных; В - матрица-столбец свободных членов. Если матрица А квадратная и невырожденная, то решение системы (3) может быть записано в матричной форме:

Равносильные системы уравнений. Две системы линейных уравнений называются равносильными, если множества их решений совпадают. Нахождение решений системы линейных уравнений основано на переходе к равносильной системе, которая проще исходной. Укажем простейшие операции, которые приводят к равносильной системе:

1) перемена местами двух уравнений в системе;

2) умножение какого-либо уравнения системы на действительное число (отличное от нуля);

3) прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Неизвестное называется разрешенным или базисным, если какое-нибудь уравнение системы содержит его с коэффициентом 1, а во все остальные уравнения не входит.

Если каждое уравнение системы содержит разрешенное неизвестное, то такая система называется разрешенной. Ее неизвестные, не являющиеся базисными, называются свободными.

Для отыскания всех решений совместной системы линейных уравнений достаточно найти равносильную ей разрешенную систему. Если все неизвестные окажутся базисными, то разрешенная система дает значения этих неизвестных, составляющие единственное решение исходной системы. В противном случае выражают базисные неизвестные через свободные.

Метод Жордана - Гаусса. Запишем систему линейных уравнений (2) в виде таблицы

Жордановым преобразованием системы с разрешающим элементом называется следующая последовательность действий:

1) умножение строки таблицы на число ;

2) прибавление к первой строке таблицы ее строки (полученной после первого действия), умноженной на -

3) прибавление ко второй строке строки, умноженной на - и т. д.

После этих преобразований неизвестное станет разрешенным, все коэффициенты столбца будут равны нулю, кроме

Проводя последовательно жордановы преобразования с разрешающими элементами, взятыми в различных строках, получим разрешенную систему, равносильную исходной.

Если в результате преобразований все коэффициенты при неизвестных в какой-нибудь строке окажутся равными нулю, а свободный член этой строки не будет равным нулю, то данная система уравнений несовместна. Если же получится строка, состоящая из одних нулей, то она вычеркивается из таблицы.

Пример 1. Решить систему уравнений

Решение. Запишем эту систему в виде таблицы и проведем ее преобразование к разрешенному виду в шесть шагов.

2.3.1. Определение .

Пусть даны линейные уравнения:

a 1 x + b 1 y + c 1 z = d 1 , (2.3.1)

a 2 x + b 2 y + c 2 z = d 2 , (2.3.2)

a 3 x + b 3 y + c 3 z = d 3 . (2.3.3)

Если требуется найти общее решение уравнений (2.3.1) ¾ (2.3.3), то говорят, что они образуют систему . Система, состоящая из уравнений (2.3.1) ¾ (2.3.3), обозначается следующим образом:

Общее решение уравнений, составляющих систему, называется решением системы . Решить систему (2.3.4) ¾ это значит либо найти множество всех его решений, либо доказать, что их нет.

Как и в предыдущих случаях, ниже мы найдем условия, при которых система (2.3.4) имеет единственное решение, имеет более одного решения и не имеет ни одного решения.

2.3.2. Определение . Пусть дана система (2.3.4) линейных уравнений. Матрицы

называются соответственно (основной ) матрицей и расширенной матрицей системы.

2.3.3. Определения равносильных систем вида (2.3.4), а также элементарных преобразований 1-го и 2-го типов вводятся аналогично, как и для систем из двух уравнений с двумя и тремя неизвестными.

Элементарным преобразованием 3-го типа системы (2.3.4) называется перемена местами некоторых двух уравнений этой системы. Аналогично предыдущим случаям систем из 2-х уравнений при элементарных преобразованиях системы получается система , равносильная данной .

2.3.4. Упражнение . Решить системы уравнений:

Решение. а)

(1) Поменяли местами первое и второе уравнения системы (преобразование 3-го типа).

(2) Первое уравнение, умноженное на 4, вычли из второго, и первое уравнение, умноженное на 6, вычли из третьего (преобразование 2-го типа); таким образом, из второго и третьего уравнений исключили неизвестную x .

(3) Второе уравнение, умноженное на 14, вычли из третьего; из третьего исключили неизвестную y .

(4) Из последнего уравнения находим z = 1, подставляя которое во второе, находим y = 0. Наконец, подставляя y = 0 и z = 1 в первое уравнение, находим x = -2.ñ

(1) Поменяли местами первое и второе уравнения системы.

(2) Первое уравнение, умноженное на 4, вычли из второго, и первое уравнение, умноженное на 6, вычли из третьего.

(3) Второе и третье уравнения совпали. Одно из них исключаем из системы (или, по-другому, если вычесть из третьего уравнения второе, то третье уравнение обратится в тождество 0 = 0;оно исключается из системы. Полагаем z = a .

(4) Подставляем z = a во второе и первое уравнения.

(5) Подставляя y = 12 - 12a в первое уравнение, находим x .


в) Если первое уравнение разделить на 4, а третье ¾ на 6, то придём к равносильной системе

которая равносильна уравнению x - 2y - z = -3. Решения этого уравнения известны (см. Пример 2.2.3 б))

Последнее равенство в полученной системе является противоречивым. Следовательно, система решений не имеет.

Преобразования (1) и (2) ¾ точно такие же, как и соответствующие преобразования системы б))

(3) Из последнего уравнения вычли второе.

Ответ: а) (-2; 0; 1);

б) (21 - 23a ; 12 - 12a ; a ), a ÎR ;

в) {(-3 + 2a + b ; a ; b )|a , b ÎR };

г) Система решений не имеет.

2.3.5. Из предыдущих примеров вытекает, что система с тремя неизвестными , как и система с двумя неизвестными, может иметь единственное решение , бесконечное множество решений и не иметь ни одного решения . Ниже мы разберём все возможные случаи. Но предварительно введём некоторые обозначения.

Через D обозначим определитель матрицы системы:

Через D 1 обозначим определитель, полученный из D заменой первого столбца на столбец свободных членов:

Аналогично, положим

D 2 = и D 3 = .

2.3.6. Теорема . Если D¹0, то система (2.3.4) имеет единственное решение

, , . (2.3.5)

Формулы (2.3.5) называются формулами = = 0 для всех i ¹j и хотя бы один из определителей , , не равен нулю , то система решений не имеет .

4) Если = = = = = = 0 для всех i ¹j , то система имеет бесконечное множество решений , зависящих от двух параметров .

Читайте также: