Сравнения по модулю примеры решения. Сравнение чисел по модулю. Вычисление обратного элемента по заданному модулю

На n они дают одинаковые остатки.

Эквивалентные формулировки: a и b сравнимы по модулю n , если их разность a - b делится на n , или если a может быть представлено в виде a = b + k n , где k - некоторое целое число. Например: 32 и −10 сравнимы по модулю 7, так как

Утверждение « a и b сравнимы по модулю n » записывается в виде:

Свойства равенства по модулю

Отношение сравнения по модулю обладает свойствами

Любые два целых числа a и b сравнимы по модулю 1.

Для того, чтобы числа a и b были сравнимы по модулю n , необходимо и достаточно, чтобы их разность делилась на n .

Если числа и попарно сравнимы по модулю n , то их суммы и , а также произведения и тоже сравнимы по модулю n .

Если числа a и b сравнимы по модулю n , то их степени a k и b k тоже сравнимы по модулю n при любом натуральном k .

Если числа a и b сравнимы по модулю n , и n делится на m , то a и b сравнимы по модулю m .

Для того, чтобы числа a и b были сравнимы по модулю n , представленному в виде его канонического разложения на простые сомножители p i

необходимо и достаточно, чтобы

Отношение сравнения является отношением эквивалентности и обладает многими свойствами обычных равенств. Например, их можно складывать и перемножать: если

Сравнения, однако, нельзя, вообще говоря, делить друг на друга или на другие числа. Пример: , однако, сократив на 2, мы получаем ошибочное сравнение: . Правила сокращения для сравнений следующие.

Нельзя также выполнять операции со сравнениями, если их модули не совпадают.

Другие свойства:

Связанные определения

Классы вычетов

Множество всех чисел, сравнимых с a по модулю n называется классом вычетов a по модулю n , и обычно обозначается [a ] n или . Таким образом, сравнение равносильно равенству классов вычетов [a ] n = [b ] n .

Поскольку сравнение по модулю n является отношением эквивалентности на множестве целых чисел , то классы вычетов по модулю n представляют собой классы эквивалентности; их количество равно n . Множество всех классов вычетов по модулю n обозначается или .

Операции сложения и умножения на индуцируют соответствующие операции на множестве :

[a ] n + [b ] n = [a + b ] n

Относительно этих операций множество является конечным кольцом , а если n простое - конечным полем .

Системы вычетов

Система вычетов позволяет осуществлять арифметические операции над конечным набором чисел, не выходя за его пределы. Полная система вычетов по модулю n ― любой набор из n несравнимых между собой по модулю n целых чисел. Обычно в качестве полной системы вычетов по модулю n берутся наименьшие неотрицательные вычеты

0,1,...,n − 1

или абсолютно наименьшие вычеты, состоящие из чисел

,

в случае нечётного n и чисел

в случае чётного n .

Решение сравнений

Сравнения первой степени

В теории чисел , криптографии и других областях науки часто возникает задача отыскания решений сравнения первой степени вида:

Решение такого сравнения начинается с вычисления НОД (a, m)=d . При этом возможны 2 случая:

  • Если b не кратно d , то у сравнения нет решений.
  • Если b кратно d , то у сравнения существует единственное решение по модулю m / d , или, что то же самое, d решений по модулю m . В этом случае в результате сокращения исходного сравнения на d получается сравнение:

где a 1 = a / d , b 1 = b / d и m 1 = m / d являются целыми числами, причем a 1 и m 1 взаимно просты. Поэтому число a 1 можно обратить по модулю m 1 , то есть найти такое число c , что (другими словами, ). Теперь решение находится умножением полученного сравнения на c :

Практическое вычисление значения c можно осуществить разными способами: с помощью теоремы Эйлера , алгоритма Евклида , теории цепных дробей (см. алгоритм) и др. В частности, теорема Эйлера позволяет записать значение c в виде:

Пример

Для сравнения имеем d = 2 , поэтому по модулю 22 сравнение имеет два решения. Заменим 26 на 4, сравнимое с ним по модулю 22, и затем сократим все 3 числа на 2:

Поскольку 2 взаимно просто с модулем 11, можно сократить левую и правую части на 2. В итоге получаем одно решение по модулю 11: , эквивалентное двум решениям по модулю 22: .

Сравнения второй степени

Решение сравнений второй степени сводится к выяснению, является ли данное число квадратичным вычетом (с помощью квадратичного закона взаимности) и последующему вычислению квадратного корня по данному модулю.

История

Китайская теорема об остатках , известная уже много столетий, утверждает (на современном математическом языке), что кольцо вычетов по модулю произведения нескольких взаимно простых чисел является

Два целых числа а и в сравнимы по модулю натурального числа m є N, если при делении на m они дают одинаковый остаток. .

Теорема (критерий сравнимости): . Следствие 1 : каждое число сравнимо по модулю m со своим остатком от деления на m: . Следствие 2: число сравнимо по модулю m, т. и т. т., к. оно делится на этот mod.

Основные свойства сравнения: 1). Относительные сравнения являются относительно эквивалентными. 2). Сравнения по одному и тому же модулю можно почленно вычитать: . Слагаемое можно переносить из одной части в другую, при этом знак меняем на противоположный. 3). В каждой части сравнения можно прибавлять любое число, кратное модулю: сравнения по одному и тому же модулю можно почленно умножать. Следствия: 1. Обе части сравнения можно возводить в любую натуральную степень. 2. Обе части сравнения можно умножать на любое натуральное число. 4). Обе части сравнения и модуль можно умножить на одно и то же число или сократить на любой их общий делитель. 5). Если сравнение имеет место по нескольким модулям то оно имеет место и по модулю, который равен их наибольшему кратному или наибольшему общему делителю

6). Если сравнение имеет место по модулю m, то оно имеет место и по любому

делителю числа m. 7). Общий делитель одной части сравнения и модуль является делителем другой части сравнения: , .

Малая теорема Ферма: если a и m – взаимнопростые числа, тогда . Функция Эйлера – это число положительных чисел, не превосходящие n и взаимнопростые с n. Если целое число a взаимнопростое с m, то . Теорема Эйлера : если целое число a взаимнопростое с m, то . Теорема Ферма: 1. Если целое число a не делит p, где р – простое, то . 2. Если р – простое и а –любое целое число, тогда . Отношение сравнимости – это классы эквивалентности. Классы эквивалентности также называются классами вычетов, а их эквивалентности называют вычетами.

Решение сравнений: Пусть , , mєN. Тогда называется сравнением к – степени с одним неизвестным и имеет не более, чем m классов решений. Решениями данного сравнения будут являться классы вычетов по модулю m. Сравнения первой степени с одной неизвестной можно записать в виде: если: 1). это сравнение не имеет решения (например 5x ). 2). Если решение этого сравнения. 3). .

Теорема: Пусть , , то , d – класов решений mod m. Методы решения сравнений: 1). Метод испытания полной системы вычетов. 2). Метод преобразования коэффициентов. Прибавляется или вычитается из правой части любое число, кратное модулю, заменяя коэффициенты в левой части на число сравнений с модулем. Можно преобразовать сравнения так, что его можно будет сократить на а и получить решение.

Сравнение с одним неизвестным x имеет вид

Где . Еслиa n не делится на m , то и называется степенью сравнения.

Решением сравнения называется всякое целое число x 0 , для которого

Если х 0 удовлетворяет сравнению, то, согласно свойству 9 сравнений, этому сравнению будут удовлетворять все целые числа, сравнимые с x 0 по модулю m . Поэтому все решения сравнения, принадлежащие одному классу вычетов по модулю т , будем рассматривать как одно решение. Таким образом, сравнение имеет столько решений, сколько элементов полной системы вычетов ему удовлетворяет.

Сравнения, множества решений которых совпадают, называются равносильными.

2.2.1 Сравнения первой степени

Сравнение первой степени с одним неизвестным х имеет вид

(2.2)

Теорема2.4. Для того чтобы сравнение имело хотя бы одно решение, необходимо и достаточно, чтобы число b делилось на НОД(a , m ).

Доказательство. Сначала докажем необходимость. Пусть d = НОД(a , m ) и х 0 - решение сравнения. Тогда, то есть разностьах 0 b делится на т. Значит, существует такое целое число q , что ах 0 b = qm . Отсюда b = ах 0 qm . А поскольку d , как общий делитель, делит числа а и т, то уменьшаемое и вычитаемое делятся на d , а значит и b делится на d .

Теперь докажем достаточность. Пусть d - наибольший общий делитель чисел а и т, и b делится на d . Тогда по определению делимости существуют такие целые числа a 1 , b 1 1 , что.

Расширенным алгоритмом Евклида найдем линейное представление числа 1 = НОД(a 1 , m 1 ):

для некоторых x 0 , y 0 . Домножим обе части последнего равенства на b 1 d :

или, что то же самое,

,

то есть , и- решение сравнения. □

Пример2.10. Сравнение 9х = 6 (mod 12) имеет решение, так как НОД(9, 12) = 3 и 6 делится на 3. □

Пример2.11. Сравнение = 9 (mod 12) не имеет решений, так как НОД(6, 12) = 6, а 9 не делится на 6. □

Теорема 2.5. Пусть сравнение (2.2) разрешимо и d = НОД(a , m ). Тогда множество решений сравнения (2.2) состоит из d классов вычетов по модулю т, а именно, если х 0 - одно из решений, то все другие решения - это

Доказательство. Пусть х 0 - решение сравнения (2.2), то есть и, . Значит, существует такое q , что ах 0 b = qm . Подставляя теперь в последнее равенство вместо х 0 произвольное решение вида, где, получаем выражение

, делящееся на m . □

Пример 2.12. Сравнение 9х =6 (mod 12) имеет ровно три решения, так как НОД(9, 12)=3. Эти решения: х 0 = 2, х 0 + 4 = 6, х 0 + 2∙4=10.□

Пример2.13. Сравнение 11х =2 (mod 15) имеет единственное решение х 0 = 7,таккакНОД(11,15)=1.□

Покажем, как решать сравнение первой степени. Не умаляя общности, будем считать, что НОД(a , т) = 1. Тогда решение сравнения (2.2) можно искать, например, по алгоритму Евклида. Действительно, используя расширенный алгоритм Евклида, представим число 1 в виде линейной комбинации чисел a и т :

Умножим обе части этого равенства на b , получим: b = abq + mrb , откуда abq - b = - mrb , то есть a ∙ (bq ) = b (mod m ) и bq - решение срав­нения (2.2).

Еще один путь решения - использовать теорему Эйлера. Опять считаем, что НОД(а, т) = 1. Применяем теорему Эйлера: . Умножим обе части сравнения наb : . Переписывая последнее выражение в виде , получаем, что- решение сравнения (2.2).

Пусть теперь НОД(a , m ) = d >1. Тогда a = a t d , m = m t d , где НОД(а 1 , m 1) = 1. Кроме того, необходимо b = b 1 d , для того чтобы сравнение было разрешимо. Если х 0 - решение сравнения а 1 x = b 1 (mod m 1), причем единственное, поскольку НОД(а 1 , m 1) = 1, то х 0 будет решением и сравнения а 1 xd = db 1 (mod m 1), то есть исходного сравнения (2.2). Остальные d - 1 решений находим по теореме 2.5.

Сравнение первой степени с одним неизвестным имеет вид:

f (x ) 0 (mod m ); f (х ) = ах + а n . (1)

Решить сравнение – значит найти все значения х, ему удовлетворяющие. Два сравнения, которым удовлетворяют одни и те же значения х, называются равносильными .

Если сравнению (1) удовлетворяет какое-либо x = x 1, то (согласно 49) тому же сравнению будут удовлетворять и все числа, сравнимые с x 1 , по модулю m : x x 1 (mod m ). Весь этот класс чисел считается за одно решение . При таком соглашении можно сделать следующий вывод.

66.Сравнение (1) будет иметь столько решений, сколько вычетов полной системы ему удовлетворяет .

Пример. Сравнению

6x – 4 0 (mod 8)

среди чисел 0, 1,2, 3, 4, 5, 6, 7 полной системы вычетов по модулю 8 удовлетворяют два числа: х = 2 и х = 6. Поэтому указанное сравнение имеет два решения:

x 2 (mod 8), х 6 (mod 8).

Сравнение первой степени перенесением свободного члена (с обратным знаком) в правую часть можно привести к виду

ax b (mod m ). (2)

Рассмотрим сравнение, удовлетворяющее условию (а , m ) = 1.

Согласно 66 наше сравнение имеет столько решений, сколько вычетов полной системы ему удовлетворяет. Но когда x пробегает полную систему вычетов по модулю т, то ах пробегает полную систему вычетов (из 60). Следовательно, при одном и только одном значении х, взятом из полной системы, ах будет сравнимо с b. Итак,

67. При (а, m) = 1 сравнение ax b (mod m ) имеет одно решение.

Пусть теперь (a , m ) = d > 1. Тогда, чтобы сравнение (2) имело решения, необходимо (из 55), чтобы b делилось на d, иначе сравнение (2) невозможно ни при каком целом х. Предполагая, поэтому b кратным d, положим a = a 1 d , b = b 1 d , m = m 1 d. Тогда сравнение (2) будет равносильно такому (по сокращении на d ): a 1 x b 1 (mod m ), в котором уже (а 1 , m 1) = 1, и потому оно будет иметь одно решение по модулю m 1 . Пусть х 1 – наименьший неотрицательный вычет этого решения по модулю m 1, тогда все числа х, образующие это решение, найдутся в виде

x x 1 (mod m 1). (3)

По модулю же mчисла (3) образуют не одно решение, а больше, именно столько решений, сколько чисел (3) найдется в ряде 0, 1, 2, ..., m – 1 наименьших неотрицательных вычетов по модулю m. Но сюда попадут следующие числа (3):

x 1 , x 1 + m 1 , x 1 + 2m 1 , ..., x 1 + (d – 1) m 1 ,

т.е. всего d чисел (3); следовательно, сравнение (2) имеет d решений.

Получаем теорему:

68. Пусть (a, m) = d. Сравнение ax b (mod m) невозможно, если b не делится на d. При b, кратном d, сравнение имеет d решений..

69.Способ решения сравнения первой степени, основанный на теории непрерывных дробей:

Разлагая в непрерывную дробь отношение m:а ,

и рассматривая две последние подходящие дроби:

согласно свойствам непрерывных дробей (согласно 30 ) имеем

Итак, сравнение имеет решение

для разыскания, которого достаточно вычислить P n – 1 согласно способу, указанному в 30.

Пример. Решим сравнение

111x = 75 (mod 321). (4)

Здесь (111, 321) = 3, причем 75 кратно 3. Поэтому сравнение имеет три решения.

Деля обе части сравнения и модуль на 3, получим сравнение

37x = 25 (mod 107), (5)

которое нам следует сначала решить. Имеем

q
P 3

Значит, в данном случае n = 4, P n – 1 = 26, b = 25, и мы имеем решение сравнения (5) в виде

x –26 ∙ 25 99 (mod 107).

Отсюда решения сравнения (4) представляются так:

х 99; 99 + 107; 99 + 2 ∙ 107 (mod 321),

х º99; 206; 313 (mod 321).

Вычисление обратного элемента по заданному модулю

70.Если целые числа a и n взаимно просты, то существует число a′ , удовлетворяющее сравнению a ∙ a′ ≡ 1(mod n ). Число a′ называется мультипликативным обратным к a по модулю n и для него используется обозначение a - 1 (mod n ).

Вычисление обратных величин по некоторому модулю может быть выполнено решением сравнения первой степени с одним неизвестным, в котором за x принимается число a′ .

Чтобы найти решение сравнения

a ∙x ≡ 1(mod m ),

где (a,m )= 1,

можно воспользоваться алгоритмом Евклида (69) или теоремой Ферма-Эйлера, которая утверждает, что если (a,m ) = 1, то

a φ( m ) ≡ 1(mod m ).

x a φ( m )–1 (mod m ).

Группы и их свойства

Группы – один из таксономических классов, используемых при классификации математических структур с общими характерными свойствами. Группы имеют две составляющие: множество (G ) и операции (), определенные на этом множестве.

Понятия множества, элемента и принадлежности являются базисными неопределяемыми понятиями современной математики. Любое множество определяется элементами, входящими в него (которые, в свою очередь, тоже могут быть множествами). Таким образом, мы говорим, что множество определено или задано, если для любого элемента мы можем сказать, принадлежит ли он этому множеству или нет.

Для двух множеств A, B записи B A , B A , B A , B A , B \ A , A × B означают соответственно, что B является подмножеством множества A (т.е. любой элемент из B содержится также и в A , например, множество натуральных чисел содержится в множестве действительных чисел; кроме того, всегда A A ), B является собственным подмножеством множества A (т.е. B A и B A ), пересечение множеств B и A (т.е. все такие элементы, которые лежат одновременно и в A , и в B , например пересечение целых чисел и положительных действительных чисел есть множество натуральных чисел), объединение множеств B и A (т.е. множество, состоящее из элементов, которые лежат либо в A , либо в B ), разность множеств B и A (т.е. множество элементов, которые лежат в B , но не лежат в A ), декартово произведение множеств A и B (т.е. множество пар вида (a , b ), где a A , b B ). Через |A | всегда обозначается мощность множества A , т.е. количество элементов в множестве A .

Операция – это правило, согласно которому любым двум элементам множества G (a и b ) ставится в соответствие третий элемент из G: а b.

Множество элементов G с операцией называется группой , если удовлетворяются следующие условия.

Сравнение чисел по модулю

Подготовила проект: Зутикова Ирина

МАОУ «Лицей №6»

Класс: 10«а»

Научный руководитель: Желтова Ольга Николаевна

Тамбов

2016

  • Проблема
  • Цель проекта
  • Гипотеза
  • Задачи проекта и план их достижения
  • Сравнения и их свойства
  • Примеры задач и их решения
  • Используемые сайты и литература

Проблема:

Большинство учеников редко используют сравнение чисел по модулю для решений нестандартных и олимпиадных заданий.

Цель проекта:

Показать, как с помощью сравнения чисел по модулю можно решать нестандартные и олимпиадные задания.

Гипотеза:

Более глубокое изучение темы «Сравнение чисел по модулю» поможет ученикам решать некоторые нестандартные и олимпиадные задания.

Задачи проекта и план их достижения:

1.Подробно изучить тему «Сравнение чисел по модулю».

2.Решить несколько нестандартных и олимпиадных заданий, используя сравнение чисел по модулю.

3.Создать памятку для учеников на тему «Сравнение чисел по модулю».

4.Провести урок по теме «Сравнение чисел по модулю» в 10«а» классе.

5.Дать классу домашнее задание по теме «Сравнение по модулю».

6.Сравнить время выполнения задания до и после изучения темы «Сравнение по модулю».

7.Сделать выводы.

Прежде чем начать подробно изучать тему «Сравнение чисел по модулю», я решила сравнить, как она представлена в различных учебниках.

  • Алгебра и начала математического анализа. Углубленный уровень. 10 класс (Ю.М.Колягин и др.)
  • Математика: алгебра, функции, анализ данных. 7 класс (Л.Г.Петерсон и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Е.П.Нелин и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Г.К.Муравин и др.)

Как я выяснила, в некоторых учебниках эта тема даже не затрагивается, не смотря на углубленный уровень. А наиболее понятно и доступно тема представлена в учебнике Л.Г.Петерсона (Глава: Введение в теорию делимости), поэтому попробуем разобраться в «Сравнении чисел по модулю», опираясь на теорию из этого учебника.

Сравнения и их свойства.

Определение: Если два целых числа a и b имеют одинаковые остатки при делении на некоторое целое число m (m>0), то говорят, что a и b сравнимы по модулю m , и пишут:

Теорема: тогда и только тогда, когда разность aи bделится на m.

Свойства:

  1. Рефлексивность сравнений. Любое число aсравнимо само с собой по модулю m (m>0; a,m-целые числа).
  2. Симметричность сравнений. Если число a сравнимо с числом b по модулю m, то число b сравнимо с числом a по тому же модулю(m>0; a,b,m-целые числа).
  3. Транзитивность сравнений. Если число a сравнимо с числом b по модулю m, а число b сравнимо с числом cпо тому же модулю, то число a сравнимо с числом c по модулю m(m>0; a,b,c,m-целые числа).
  4. Если число a сравнимо с числом b по модулю m, то число a n сравнимо счислом b n по модулю m(m>0; a,b,m-целые числа;n-натуральное число).

Примеры задач и их решения.

1.Найти последнюю цифру числа 3 999 .

Решение:

Т.к. последняя цифра числа - это остаток от деления на 10, то

3 999 =3 3 *3 996 =3 3 *(3 4 ) 249 =7*81 249 7(mod 10)

(Т.к. 34=81 1(mod 10);81 n 1(mod10) (по свойству))

Ответ:7.

2.Доказать,что 2 4n -1 делится на 15 без остатка. (Физтех2012)

Решение:

Т.к. 16 1(mod 15), то

16 n -1 0(mod 15) (по свойству); 16n= (2 4 ) n

2 4n -1 0(mod 15)

3.Доказать, что 12 2n+1 +11 n+2 делится без остатка на 133.

Решение:

12 2n+1 =12*144 n 12*11 n (mod 133) (по свойству)

12 2n+1 +11 n+2 =12*11 n +11 n *121=11 n *(12+121) =11 n *133

Число (11 n *133)без остатка делится на 133. Следовательно,(12 2n+1 +11 n+2 )делится без остатка на 133.

4.Найти остаток от деления на 15 числа 2 2015 .

Решение:

Т.к.16 1(mod 15), то

2 2015 8(mod 15)

Ответ:8.

5.Найти остаток от деления на 17 числа 2 2015 . (Физтех2015)

Решение:

2 2015 =2 3 *2 2012 =8*16 503

Т.к.16 -1(mod 17), то

2 2015 -8(mod 15)

8 9(mod 17)

Ответ:9.

6.Доказать, что число 11 100 -1 делится на 100 без остатка. (Физтех2015)

Решение:

11 100 =121 50

121 50 21 50 (mod 100) (по свойству)

21 50 =441 25

441 25 41 25 (mod 100) (по свойству)

41 25 =41*1681 12

1681 12 (-19) 12 (mod 100) (по свойству)

41*(-19) 12 =41*361 6

361 6 (-39) 6 (mod 100)(по свойству)

41*(-39) 6 =41*1521 3

1521 3 21 3 (mod100) (по свойству)

41*21 3 =41*21*441

441 41(mod 100) (по свойству)

21*41 2 =21*1681

1681 -19(mod 100) (по свойству)

21*(-19)=-399

399 1(mod 100) (по свойству)

Значит 11 100 1(mod 100)

11 100 -1 0(mod 100) (по свойству)

7.Даны три числа: 1771,1935,2222. Найти число, при делении на которое остатки трёх данных чисел будут равны. (ВШЭ2016)

Решение:

Пусть неизвестное нам число будет равно а,тогда

2222 1935(mod a); 1935 1771(mod a); 2222 1771(mod a)

2222-1935 0(moda) (посвойству); 1935-1771 0(moda) (по свойству); 2222-1771 0(moda) (по свойству)

287 0(mod a); 164 0(mod a); 451 0(mod a)

287-164 0(moda) (по свойству); 451-287 0(moda)(по свойству)

123 0(mod a); 164 0(mod a)

164-123 0(mod a) (посвойству)

41

  • Олимпиада ВШЭ2016
  • Читайте также: