Отношение делимости в кольце целых чисел. Свойства. Делимость суммы, разности, произведения целых неотрицательных чисел Отношение делимости целых чисел и его свойства

Лекция 44. Делимость целых неотрицательных чисел

ДЕЛИМОСТЬ НАТУРАЛЬНЫХ ЧИСЕЛ

1. Отношение делимости на множестве неотрицательных чисел.

2. Свойства отношения делимости.

3. Делимость суммы, разности и произведения целых неотрицательных чисел.

Как известно, вычитание и деление на множестве нату­ральных чисел выполнимо не всегда. Вопрос о существовании разности натуральных чисел а и b решается просто - доста­точно установить (по записи чисел), что b < а. Для деления такого общего и простого признака нет. Поэтому в математической науке с давних пор пытались найти такие правила, которые позволили бы по записи числа а узнавать, делится оно на число b или нет, не выполняя непосредственного деле­ния а на b. В результате этих поисков были открыты не толь­ко некоторые признаки делимости, но и другие важные свой­ства чисел; познакомимся с некоторыми из них.

В начальных курсах математики Делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются. Например, признак делимости суммы, разности и произведения на число тесно связаны с правилами деления суммы, разности и произведения на число, изучаемыми в начальных классах. В ряде курсов изучаются признаки делимости чисел на 2,3,5 и другие.

Вообще знания о делимости натуральных чисел расширя­ют представления о множестве натуральных чисел, позволяют глубже усвоить материал, связанный с делением натуральных чисел, применять полученные ранее знания о способах дока­зательства, о свойствах отношений и др.

Определение. Пусть даны натуральные числа а и b. Гово­рят, что число а делится на число b, если существует та­кое натуральное число q, что a = bq.

В этом случае число b называют делителем числа а, а число а - кратным числа b.

Например, 24 делится на 8, так как существует такое q =3, что 24 = 8·3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8. В том случае, когда а делится на b, пишут: а: . b. Эту запись »« читают и так: «а кратно b». Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 -делитель, но 5 не является делителем числа 18. Если 18 делят 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства а = 1·а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.



Теорема 1. Делитель b данного числа а не превышает этого числа, т.е. если

а: . b, то b < а.

Доказательство. Так как а: . b, то существует такое q Є N,что a = bq u, значит, a-b = bq – b= b·(q - 1). Поскольку q Є N,тоq≥ 1. Тогда b· (q - 1) ≥ 0 и, следовательно, b ≤ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. образуют конечное множество {1,2,3,4,6,9,12,18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое нату­ральное число, которое имеет только два делителя - единицу и само это число.

Например, число 13- простое, поскольку, у него только два делителя: 1 и 13.

Определение. Составным числом называется такое нату­ральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1,2 и 4.

Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, - их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, …, и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,....

Нам известно, что отношение делимости обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимо­сти, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справед­ливо равенство а = а·1. Так как 1 Є N, то, по определению отношения делимости, а: . а.

Теорема 3. Отношение делимости антисимметрично, т.е. если а: . b и а ≠ b,

то b ⁞͞ a.

Доказательство. Предположим противное, т.е. что b a. Но тогда а ≤ b, согласно теореме, рассмотренной выше.

По условию и а . b и а ≠ b. Тогда, по той же теореме, b ≤ а.

Неравенства а ≤ b и b ≤ а будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следова­тельно, наше предположение неверное и теорема доказана.

Теорема 4 . Отношение делимости транзитивно, т.е. если а b и b с, то а с.

Доказательство. Так как а: . b, то существует такое нату­ральное число q, что a = bq, а так как b с, то существует такое натуральное число р, что b = ср. Но тогда имеем: a = bq = (cp)q = c(pq)- Число pq - натуральное. Значит, по определе­нию отношения делимости,

а с.

Теорема 5 (признак делимости суммы). Если каждое из натуральных чисел а 1 , а 2 , ...,а п делится на натуральное число b, то и их сумма a 1 + а 2 + ... + а n делится на это число.

Доказательство. Так как а 1 b, то существует такое на­туральное число q 1 , что а 1 =bq 1 . Так как а 2 b, то существует такое натуральное число q 2 , что а 2 = bq 2 . Продолжая рассуж­дения, получим, что если а n: . b, то существует такое натуральное число q n , что а п = bq n . Эти равенства позволяют преобразовать сумму а 1 + а 2 + ... +а п в сумму вида bq 1 + bq 2 + ... + bq n . Вынесем за скобки общий множитель b, а получившееся в скобках натуральное число q 1 + q 2 + ... + q n обозначим буквой q. Тогда a 1 + a 2 + ... + a n = b(q 1 + q 2 +... + q n) = bq, т.е. сумма а 1 + а 2 +… + а п оказалась представленной в виде произведения числа b и некоторого натурального числа q. А это значит, что сумма а 1 + а 2 +… + а п делится на b, что и требовалось доказать.

Например, не производя вычислений, можно сказать, что 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 делятся на b и а 1 ≥ а 2 , то их разность а 1 - а 2 делится на b.

Доказательство этой теоремы аналогично доказательству признака делимости суммы.

Теорема 7 (признак делимости произведения). Если число а делится на b, то произведениe вида ах, где х Є N, делитcя на b.

Доказательство. Так как а: . b, то существует такое натуральное число q, что a = bq. Умножим обе части этого равенства на натуральное число х. Тогда ах=(bq)x, откуда на основании свойства ассоциативности умножения (bq)x = b(qx)и, значит, ax = b(qx), где qx - натуральное число. Согласно определению отношения делимости, ax: . b, что и требовалось доказать.

Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b. Например, произведение 24·976·305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся cумма на число b не делится.

Доказательство. Пусть s = а 1 + а г + ... + а п +" с и известно, что а 1: . B, а 2: . B,

а 3: . b, … а n: . b, но с: . b. Докажем, что тогда s: . b

Предположим противное, т.е. Пусть s: . b. Преобразуем сумму s к виду с = s- (а 1 + а 2 + + а n ). Так как s: . b по предположению, (а 1 + а 2 + + а n ) : . b согласно признаку делимости суммы, то по теореме делимости разности с: .b

Пришли к противоречию с тем, что дано. Следовательно, s: . b.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так 34: .2,376: .2,124: .2, но 125 не делится на 2.

Теорема 9 . Если в произведении ab множитель a делится на натуральное число т, а множитель b делится на натуральное число n,то ab делится на mn.

Справедливость этого утверждения вытекает из теоремы о делимости произведения.

Теорема 10. Если произведение ас делится на произведе­ние bс, причем с - натуральное число, то и а делится на b.

Доказательство. Так как ас делится на bc, то существует такое натуральное число q, что ас = (bc)q, откуда ас = (bq)c и, следовательно, а = bq, т.е. а : .b.

Упражнения

1. Объясните, почему число 15 является делителем числа 60 и не является делителем числа 70.

2. Постройте граф отношения «быть делителем данного числа», заданного на множестве Х = {2, 6,. 12, 18, 24}. Как от­ражены на этом графе свойства данного отношения?

3. Известно, что число 24 - делитель числа 96, а число 96 -делитель числа 672. Докажите, что число 24 делитель числа 672, не выполняя деления.

4. Запишите множество делителей числа.

а) 24; 6)13; в) 1.

5 .На множестве X ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; 12} задано отношение «иметь одно и то же число делителей». Является ли оно отношением эквивалентности?

6 .Постройте умозаключение, доказывающее, что:

а) число 19 является простым;

б) число 22 является составным.

7. Докажите или опровергните следующие утверждения:

а) Если сумма двух слагаемых делится на некоторое число, то и каждое слагаемое делится на это число.

б) Если одно из слагаемых суммы не делится на некоторое число, то и сумма не делится на это число.

в) Если ни одно слагаемое не делится на некоторое число, то и сумма не делится на это число.

г) Если одно из слагаемых суммы делится на некоторое число, а другое не делится на это число, то и сумма не делится на это число.

8. Верно ли, что:

а) а: . т и b: . n =>ab: .mn

б) а: .п и b: .n => ab: .n;

Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq.

В этом случае число b называютделителем числа а , а число а - кратным числа b.

Например , 24 делится на 8, так как существует такое q = 3, что 24 = 8×3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а M b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства a = 1 × а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т. е. если а M b, то b £ а.

Доказательство. Так как а M b, то существует такое qÎ N, что а = bq и, значит, а - b = bq - b = b ×(q - 1). Поскольку qÎ N, то q ³ 1. . Тогда b ×(q - 1) ³ 0 и, следовательно, и b £ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. Они образуют конечное множество {1,2,3,4,6,9, 12, 18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, большее 1, которое имеет только два делителя - единицу и само это число.

Например , 13 – простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4. Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, -их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, .... и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,... .

Нам известно, что отношение делимости на множестве N обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справедливо ра­венство а = а× 1. Так как 1 Î N то, по определению отношения дели­мости, аMа.

Теорема 3 . Отношение делимости антисимметрично, т.е. если а M b и а ¹ b, то .

Доказательство. Предположим противное, т. е. что bMа. Но тогда а£ b, согласно теореме, рассмотренной выше.

По условию а M b и а ¹ b. Тогда, по той же теореме, b £ а.

Неравенства а £ b и b £ а.будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предпо­ложение неверное и теорема доказана.

Теорема 4. Отношение делимости транзитивно, т.е. если а M b и b M с, то а M с.

Доказательство. Так как а M b, q, что а = b q , а так как bM с, то существует такое натуральное число р , что b = ср. Но тогда имеем: а = b q = (ср)q = с(рq). Число рq - натуральное. Значит, по определению отношения делимости, а. M с.

Теорема 5 (признак делимости суммы). Если каждое из натураль­ных чисел а 1, а 2 ,…а п делится на натуральное число b, то и их сумма а 1 + а 2 + … + а п делится на это число.

Например , не производя вычислений, можно сказать, что сумма 175 + 360 +915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 де­лятся на b и а 1 ³ а 2 , то их разность а 1 - а 2 делится на b.

Теорема 7 (признак делимости произведения). Если число а де­лится на b, то произведение вида ах, где х е N. делится на b.

Из теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например , произведение 24×976×305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34:2,376: 2,124: 2,но 125 не делится на 2.

Теорема 9. Если в произведении аb множитель а делится на натуральное число т, а множитель b делится на натуральное число п то а b делится на тп.

Справедливость этого утверждения вытекает из теоремы о делимо­сти произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и а делится на b.

Конец работы -

Эта тема принадлежит разделу:

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы

При аксиоматическом построении теории по существу все утверж дения выводятся путем доказательства из аксиом поэтому к системе аксиом предъявляются.. система аксиом называется непротиворечивой если из нее нельзя логически.. если система аксиом не обладает этим свойством она не может быть пригодной для обоснования научной теории..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Количественные натуральные числа. Счет
Аксиоматическая теория описывает натуральное число как эле­мент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматик

Вопросы для самоконтроля
1. Назовите виды множеств, дайте им характеристику. Какие можно производить операции над множествами? 2. Что такое «число», «цифра», «счет»? 3. В чем связь и различие счета и изме


Основная литература; Дополнительная литература Введение. Введя понятие отрезка натурального ряда, мы выяснил

Теоретико-множественный смысл суммы
Сложение целых неотрицательных чисел связано с объединением конечных непересекающихся множеств. Например, если множество А содержит 5 элементов, а множество В - 4 элемента и пересечен


В аксиоматической теории вычитание натуральных чисел определено как операция, обратная сложению: а – b = с Û ($ сÎN) b + с = а. Вычитание целых неотрицательных чисел определяет

Теоретико-множественный смысл произведения
Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следовать за» и сложении. В школьном курсе математики используется другое определ

Теоретико-множественный смысл частного натуральных чисел
В аксиоматической теории деление определяется как операция, обратная умножению, поэтому между делением и умножением устанавливается тесная взаимосвязь. Если а× b = с, то, зная произведение с

Позиционные и непозиционные системы исчисления
Содержание 1. Позиционные и непозиционные системы счисления. 2. Запись числа в десятичной системе счисления. Основная литература ;

Язык для наименования, записи чисел и выполнения действий над ними называют системой счисления
Называть числа и вести счет люди научились еще до появления письменности. В этом им помогали, прежде всего, пальцы рук и ног. Издревле употреблялся еще такой вид инструментального счета, как деревя

Запись числа в десятичной системе счисления
Как известно, в десятичной системе счисления для записи чисел пользуется 10 знаков (цифр): 0, 1,2, 3, 4, 5, 6, 7, 8, 9. Из них образую конечные последовательности, которые являются краткими записям

Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел,

Алгоритм вычитания
Вычитание однозначного числа b из однозначного или двузначного числа а, не превышающего 18, сводится к поиску такого числа с, что b + с = а, и происходит с учетом таблицы сложения однозначных чисел

Описанный процесс позволяет сформулировать в общем виде алгоритм вычитания чисел в десятичной системе счисления
1. Записываем вычитаемое под уменьшаемым так, чтобы соответствующие разряды находились друг под другом. 2. Если цифра в разряде единиц вычитаемого не превосходит соответствующей цифры умен

Алгоритм умножения
Умножение однозначных чисел можно выполнить, основываясь на определении этого действия. Но чтобы всякий раз не обращаться к определению, все произведения однозначных чисел записывают в особую табли

Алгоритм деления
Когда речь идет о технике деления чисел, то этот процесс рассматривают как действие деления с остатком: разделить целое неотрицательное число а на натуральное число b - это значит найти

Обобщением различных случаев деления целого неотрицательного числа а на натуральное число b является следующий алгоритм деления уголком
1. Если а =b, то частное q = 1, остаток r = 0. 2. Если а >b и число разрядов в числах а и b одинаково, то частное q находим перебором, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7,


4. Простые числа. 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел. Основная литература ; Дополнительн

Признаки делимости
Рассмотренные в свойства отношения делимости позволяют доказать известные признаки делимости чисел, записанных в десятич­ной системе счисления, на 2, 3, 4, 5, 9. Признаки делимости позволя

Наименьшее общее кратное и наибольший общий делитель
Рассмотрим известные из школьного курса математики понятия наименьшего общего кратного и наибольшего общего делителя натуральных чисел, сформулируем их основные свойства, опустив все доказательства

Простые числа
Простые числа играют большую роль в математике - по существу они являются «кирпичами», из которых строятся составные числа. Это утверждается в теореме, называемой основной теоремой арифмет

Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
Рассмотрим сначала способ, основанный на разложении данных чисел на простые множители. Пусть даны два числа 3600 и 288. Представим их в каноническом виде: 3600 = 24×3

О расширении множества натуральных чисел
Содержание 1. Понятие дроби. 2. Положительные рациональные числа. 3. Запись положительных рациональных чисел в виде десятичных дробей. 4. Действительные ч

Понятие дроби
Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 1). При измерении оказалос

Положительные рациональные числа
Отношение равенства является отношением эквивалентностинамножестве дробей, поэтому оно порождает на нем классы эквивалентности. В каждом таком классе содержатся равные междусобой дроби. На

Сложение положительных рациональных чисел коммутативно и ассоциативно,
("а, b Î Q+) а + b= b + а; ("а, b, с Î Q+) (а + b)+ с = а + (b+ с) Прежде чем сформулировать определе

Запись положительных рациональных чисел в виде десятичных дробей
Впрактической деятельности широко используются дроби, знаменатели которых являются степенями 10. Их называют десятичными. Определение. Десят

Действительные числа
Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин. Выясним, например, как могут получиться десятичные дроби при измерении длины отрезка.

Теоретико-множественный смысл разности
8. Отношения «больше на» и «меньше на». 9. Правила вычитания числа из суммы и суммы из числа. 10. Из истории возникновения и развития способов записи натуральных чисел и нуля.

Множество положительных рациональных чисел как расширение множества натуральных чисел
27. Запись положительных рациональных чисел в виде десятичных дробей. 28. Действительные числа. МОДУЛЬ 4. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ВЕЛИЧ

Понятие положительной скалярной величины и ее измерения
Рассмотрим два высказывания, в которых используется слово «длина»: 1) Многие окружающие нас предметы имеют длину. 2) Стол имеет длину. В первом предложении утверждается,


Материалом этой статьи начинается теория делимости целых чисел . Здесь мы введем понятие делимости и укажем принятые термины и обозначения. Это нам позволит перечислить и обосновать основные свойства делимости.

Навигация по странице.

Понятие делимости

Понятие делимости – это одно из основных понятий арифметики и теории чисел. Мы будем говорить о делимости и в частных случаях - о делимости . Итак, дадим представление о делимости на множестве целых чисел.

Целое число a делится на целое число b , которое отлично от нуля, если существует такое целое число (обозначим его q ), что справедливо равенство a=b·q . В этом случае также говорят, что b делит a . При этом целое число b называется делителем числа a , целое число a называется кратным числа b (для получения более детальной информации о делителях и кратных обращайтесь к статье делители и кратные), а целое число q называют частным .

Если целое число a делится на целое число b в указанном выше смысле, то можно сказать, что a делится на b нацело . Слово «нацело» в этом случае дополнительно подчеркивает, что частное от деления целого числа a на целое число b является целым числом.

В некоторых случаях для данных целых чисел a и b не существует такого целого числа q , при котором справедливо равенство a=b·q . В таких случаях говорят, что целое число a не делится на целое число b (при этом имеется в виду, что a не делится на b нацело). Однако в этих случаях прибегают к .

Разберемся с понятием делимости на примерах.

    Любое целое число a делится на число a , на число −a , a , на единицу и на число −1 .

    Докажем это свойство делимости.

    Для любого целого числа a справедливы равенства a=a·1 и a=1·a , из которых следует, что a делится на a , причем частное равно единице, и что a делится на 1 , причем частное равно a . Для любого целого числа a также справедливы равенства a=(−a)·(−1) и a=(−1)·(−a) , из которых следует делимость a на число, противоположное числу a , а также делимость a на минус единицу.

    Отметим, что свойство делимости целого числа a на себя называют свойством рефлексивности.

    Следующее свойство делимости утверждает, что нуль делится на любое целое число b .

    Действительно, так как 0=b·0 для любого целого числа b , то нуль делится на любое целое число.

    В частности, нуль делится и на нуль. Это подтверждает равенство 0=0·q , где q – любое целое число. Из этого равенства вытекает, что частным от деления нуля на нуль является любое целое число.

    Также нужно отметить, что на 0 не делится никакое другое целое число a , отличное нуля. Поясним это. Если бы нуль делил целое число a , отличное от нуля, то должно было бы быть справедливо равенство a=0·q , где q – некоторое целое число, а последнее равенство возможно только при a=0 .

    Если целое число a делится на целое число b и a меньше модуля числа b , то a равно нулю. В буквенном виде это свойство делимости записывается так: если ab и , то a=0 .

    Доказательство.

    Так как a делится на b , то существует целое число q , при котором верно равенство a=b·q . Тогда должно быть справедливо и равенство , а в силу должно быть справедливо и равенство вида . Если q не равно нулю, то , откуда следует, что . Учитывая полученное неравенство, из равенства следует, что . Но это противоречит условию . Таким образом, q может быть равно только нулю, при этом получим a=b·q=b·0=0 , что и требовалось доказать.

    Если целое число a отлично от нуля и делится на целое число b , то модуль числа a не меньше модуля числа b . То есть, если a≠0 и ab , то . Это свойство делимости непосредственно вытекает из предыдущего.

    Делителями единицы являются только целые числа 1 и −1 .

    Во-первых, покажем, что единица делится на 1 и на −1 . Это следует из равенств 1=1·1 и 1=(−1)·(−1) .

    Осталось доказать, что никакое другое целое число не является делителем единицы.

    Предположим, что целое число b , отличное от 1 и −1 , является делителем единицы. Так как единица делится на b , то в силу предыдущего свойства делимости должно выполняться неравенство , которое равносильно неравенству . Этому неравенству удовлетворяют только три целых числа: 1 , 0 , и −1 . Так как мы приняли, что b отлично от 1 и −1 , то остается лишь b=0 . Но b=0 не может быть делителем единицы (что мы показали при описании второго свойства делимости). Этим доказано, что никакие числа, отличные от 1 и −1 , не являются делителями единицы.

    Чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы модуль числа a делился на модуль числа b .

    Докажем сначала необходимость.

    Пусть a делится на b , тогда существует такое целое число q , что a=b·q . Тогда . Так как является целым числом, то из равенства следует делимость модуля числа a на модуль числа b .

    Теперь достаточность.

    Пусть модуль числа a делится на модуль числа b , тогда существует такое целое число q , что . Если числа a и b положительные, то справедливо равенство a=b·q , которое доказывает делимость a на b . Если a и b отрицательные, то верно равенство −a=(−b)·q , которое можно переписать как a=b·q . Если a – отрицательное число, а b – положительное, то имеем −a=b·q , это равенство равносильно равенству a=b·(−q) . Если a – положительное, а b – отрицательное, то имеем a=(−b)·q , и a=b·(−q) . Так как и q и −q являются целыми числами, то полученные равенства доказывают, что a делится на b .

    Следствие 1.

    Если целое число a делится на целое число b , то a также делится на число −b , противоположное числу b .

    Следствие 2.

    Если целое число a делится на целое число b , то и −a делится на b .

    Важность только что рассмотренного свойства делимости сложно переоценить - теорию делимости можно описывать на множестве целых положительных чисел, а это свойства делимости распространяет ее и на целые отрицательные числа.

    Делимость обладает свойством транзитивности: если целое число a делится на некоторое целое число m , а число m в свою очередь делится на некоторое целое число b , то a делится на b . То есть, если am и mb , то ab .

    Приведем доказательство этого свойства делимости.

    Так как a делится на m , то существует некоторое целое число a 1 такое, что a=m·a 1 . Аналогично, так как m делится на b , то существует некоторое целое число m 1 такое, что m=b·m 1 . Тогда a=m·a 1 =(b·m 1)·a 1 =b·(m 1 ·a 1) . Так как произведение двух целых чисел является целым числом, то m 1 ·a 1 - это некоторое целое число. Обозначив его q , приходим к равенству a=b·q , которое доказывает рассматриваемое свойство делимости.

    Делимость обладает свойством антисимметричности, то есть, если a делится на b и одновременно b делится на a , то равны либо целые числа a и b , либо числа a и −b .

    Из делимости a на b и b на a можно говорить о существовании целых чисел q 1 и q 2 таких, что a=b·q 1 и b=a·q 2 . Подставив во второе равенство b·q 1 вместо a , или подставив в первое равенство a·q 2 вместо b , получим, что q 1 ·q 2 =1 , а учитывая, что q 1 и q 2 – целые, это возможно лишь при q 1 =q 2 =1 или при q 1 =q 2 =−1 . Отсюда следует, что a=b или a=−b (или, что то же самое, b=a или b=−a ).

    Для любого целого и отличного от нуля числа b найдется такое целое число a , не равное b , которое делится на b .

    Таким числом будет любое из чисел a=b·q , где q – любое целое число, не равное единице. Можно переходить к следующему свойству делимости.

    Если каждое из двух целых слагаемых a и b делится на целое число c , то сумма a+b также делится на c .

    Так как a и b делятся на c , то можно записать a=c·q 1 и b=c·q 2 . Тогда a+b=c·q 1 +c·q 2 =c·(q 1 +q 2) (последний переход возможен в силу ). Так как сумма двух целых чисел является целым числом, то равенство a+b=c·(q 1 +q 2) доказывает делимость суммы a+b на c .

    Это свойство можно распространить на сумму трех, четырех и большего количества слагаемых.

    Если еще вспомнить, что вычитание из целого числа a целого числа b представляет собой сложение числа a с числом −b (смотрите ), то данное свойство делимости справедливо и для разности чисел. Например, если целые числа a и b делятся на c , то разность a−b также делится на с .

    Если известно, что в равенстве вида k+l+…+n=p+q+…+s все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

    Допустим, этим членом является p (мы можем взять любой из членов равенства, что не повлияет на рассуждения). Тогда p=k+l+…+n−q−…−s . Выражение, получившееся в правой части равенства, делится на b в силу предыдущего свойства. Следовательно, число p также делится на b .

    Если целое число a делится на целое число b , то произведение a·k , где k – произвольное целое число, делится на b .

    Так как a делится на b , то справедливо равенство a=b·q , где q – некоторое целое число. Тогда a·k=(b·q)·k=b·(q·k) (последний переход осуществлен в силу ). Так как произведение двух целых чисел есть целое число, то равенство a·k=b·(q·k) доказывает делимость произведения a·k на b .

    Следствие: если целое число a делится на целое число b , то произведение a·k 1 ·k 2 ·…·k n , где k 1 , k 2 , …, k n – некоторые целые числа, делится на b .

    Если целые числа a и b делятся на c , то сумма произведений a·u и b·v вида a·u+b·v , где u и v – произвольные целые числа, делится на c .

    Доказательство этого свойства делимости аналогично двум предыдущим. Из условия имеем a=c·q 1 и b=c·q 2 . Тогда a·u+b·v=(c·q 1)·u+(c·q 2)·v=c·(q 1 ·u+q 2 ·v) . Так как сумма q 1 ·u+q 2 ·v является целым числом, то равенство вида a·u+b·v=c·(q 1 ·u+q 2 ·v) доказывает, что a·u+b·v делится на c .

На этом закончим обзор основных свойств делимости.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq.

В этом случае число b называютделителем числа а , а число а - кратным числа b.

Например , 24 делится на 8, так как существует такое q = 3, что 24 = 8×3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а M b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства a = 1 × а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т. е. если а M b, то b £ а.

Доказательство. Так как а M b, то существует такое qÎ N, что а = bq и, значит, а - b = bq - b = b ×(q - 1). Поскольку qÎ N, то q ³ 1. . Тогда b ×(q - 1) ³ 0 и, следовательно, и b £ а.

Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. Они образуют конечное множество {1,2,3,4,6,9, 12, 18,36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, большее 1, которое имеет только два делителя - единицу и само это число.

Например , 13 – простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4. Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, -их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, .... и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,... .

Нам известно, что отношение делимости на множестве N обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство. Для любого натурального а справедливо ра­венство а = а× 1. Так как 1 Î N то, по определению отношения дели­мости, аMа.

Теорема 3 . Отношение делимости антисимметрично, т.е. если а M b и а ¹ b, то .

Доказательство. Предположим противное, т. е. что bMа. Но тогда а£ b, согласно теореме, рассмотренной выше.

По условию а M b и а ¹ b. Тогда, по той же теореме, b £ а.

Неравенства а £ b и b £ а.будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предпо­ложение неверное и теорема доказана.

Теорема 4. Отношение делимости транзитивно, т.е. если а M b и b M с, то а M с.

Доказательство. Так как а M b, q, что а = b q , а так как bM с, то существует такое натуральное число р , что b = ср. Но тогда имеем: а = b q = (ср)q = с(рq). Число рq - натуральное. Значит, по определению отношения делимости, а. M с.

Теорема 5 (признак делимости суммы). Если каждое из натураль­ных чисел а 1, а 2 ,…а п делится на натуральное число b, то и их сумма а 1 + а 2 + … + а п делится на это число.

Например , не производя вычислений, можно сказать, что сумма 175 + 360 +915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа а 1 и а 2 де­лятся на b и а 1 ³ а 2 , то их разность а 1 - а 2 делится на b.

Теорема 7 (признак делимости произведения). Если число а де­лится на b, то произведение вида ах, где х е N. делится на b.

Из теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например , произведение 24×976×305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34:2,376: 2,124: 2,но 125 не делится на 2.

Теорема 9. Если в произведении аb множитель а делится на натуральное число т, а множитель b делится на натуральное число п то а b делится на тп.

Справедливость этого утверждения вытекает из теоремы о делимо­сти произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и а делится на b.

Читайте также: