Рациональные корни многочлена. Рациональные корни многочлена Рациональные корни многочлена с рациональными коэффициентами

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}

Иррациона́льное число́ - это вещественное число , которое не является рациональным , то есть не может быть представлено в виде дроби , где - целые числа , . Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби .

Множество иррациональных чисел обычно обозначается заглавной латинской буквой в полужирном начертании без заливки. Таким образом: , т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.

О существовании иррациональных чисел, точнее отрезков , несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .

Свойства

  • Всякое вещественное число может быть записано в виде бесконечной десятичной дроби , при этом иррациональные числа и только они записываются непериодическими бесконечными десятичными дробями.
  • Иррациональные числа определяют Дедекиндовы сечения в множестве рациональных чисел, у которых в нижнем классе нет наибольшего, а в верхнем нет наименьшего числа.
  • Каждое вещественное трансцендентное число является иррациональным.
  • Каждое иррациональное число является либо алгебраическим , либо трансцендентным.
  • Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число.
  • Порядок на множестве иррациональных чисел изоморфен порядку на множестве вещественных трансцендентных чисел.
  • Множество иррациональных чисел несчётно , является множеством второй категории .

Примеры

Иррациональные числа
- ζ(3) - √2 - √3 - √5 - - - - -

Иррациональными являются:

Примеры доказательства иррациональности

Корень из 2

Допустим противное: рационален , то есть представляется в виде несократимой дроби , где - целое число , а - натуральное число . Возведём предполагаемое равенство в квадрат:

.

Отсюда следует, что чётно, значит, чётно и . Пускай , где целое. Тогда

Следовательно, чётно, значит, чётно и . Мы получили, что и чётны, что противоречит несократимости дроби . Значит, исходное предположение было неверным, и - иррациональное число.

Двоичный логарифм числа 3

Допустим противное: рационален , то есть представляется в виде дроби , где и - целые числа . Поскольку , и могут быть выбраны положительными. Тогда

Но чётно, а нечётно. Получаем противоречие.

e

История

Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. - ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.

Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу , который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:

  • Отношение длины гипотенузы к длине катета равнобедренного прямоугольного треугольника может быть выражено как a :b , где a и b выбраны наименьшими из возможных.
  • По теореме Пифагора: a ² = 2b ².
  • Так как a ² четное, a должно быть четным (так как квадрат нечетного числа был бы нечетным).
  • Поскольку a :b несократима, b обязано быть нечетным.
  • Так как a четное, обозначим a = 2y .
  • Тогда a ² = 4y ² = 2b ².
  • b ² = 2y ², следовательно b ² четное, тогда и b четно.
  • Однако было доказано, что b нечетное. Противоречие.

Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.

Если многочлен

Доказательство

Пусть все коэффициенты многочлена являются целыми числами, и пусть целое число a является корнем этого многочлена. Так как в этом случае то отсюда следует, что коэффициент делится на a.

Замечание . Эта теорема фактически позволяет находить корни многочленов высших степеней в том случае, когда коэффициенты этих многочленов − целые числа, а корень − рациональное число. Теорему можно переформулировать так: если нам известно, что коэффициенты многочлена − целые числа, а корни его − рациональны, то эти рациональные корни могут быть только вида где p является делителем числа (свободного члена), а число q является делителем числа (старшего коэффициента).

Теорема о целых корнях, заключающая в себе

Если целое число α - корень многочлена с целыми коэффициентами, то α - делитель его свободного члена.

Доказательство. Пусть:

P (x)=a 0 xⁿ +a 1 xⁿ -1 +…+a n-1 x +a n

многочлен с целыми коэффициентами и целое число α −его корень.

Тогда по определению корня выполняется равенство P (α)=0;

a 0 αⁿ+a 1 αⁿ -1 +…+a n-1 α +a n =0.

Вынося общий множитель α за скобки, получим равенство:

α(a 0 αⁿ -1 +a 1 αⁿ -2 +…+a n-1)+a n =0 , откуда

a n = -α(a 0 αⁿ -1 +a 1 αⁿ -2 +…+a n-1)

Так как числа a 0 , a 1 ,…a n-1 , an и α −целые, то в скобке стоит целое число, и, следовательно, a n делится, на α, что и требовалось доказать.

Доказанная теорема может быть сформулирована и следующим образом: всякий целый корень многочлена с целыми коэффициентами является делителем его свободного члена.
На теореме основан алгоритм поиска целых корней многочлена с целыми коэффициентами: выписать все делители свободного члена и поочерёдно выписать значения многочленов этих чисел.

2.Дополнительная теорема о целых корнях

Если целое число α−корень многочлена P(x) с целыми коэффициентами, то α-1−делитель числа P(1), α+1−делитель числа P(-1)

Доказательство. Из тождества

xⁿ-yⁿ=(x-y)(xⁿ -1 +xⁿ -2 y+…+ xyⁿ -2 +yⁿ -1)

вытекает, что для целых чисел b и c число bⁿ-cⁿ делится на b∙c. Но для любого многочлена P разность

P (b)-P(c)= (a 0 bⁿ+a 1 bⁿ -1 +…+a n-1 b+a n)-(a 0 cⁿ+a 1 cⁿ -1 +…+a n-1 c+a n)=

=a 0 (bⁿ- cⁿ)+a 1 (bⁿ -1 -cⁿ -1)+…+a n-1 (b-c)

и, следовательно, для многочлена P с целыми коэффициентами и целых чисел b и c разность P(b)-P(c) делится на b-c.



Затем: при b = α , с=1, P (α)-P (1)= -P(1), а значит, P(1) делится на α-1. Аналогично рассматривается второй случай.

Схема Горнера

Теорема: Пусть несократимая дробь p/q является корнем уравнения a 0 x n +a 1 x n − 1 + +a n − 1 x+a n =0 c целыми коэффициентами, тогда число q является делителем старшего коэффициента a0, а число р является делителем свободного члена a n .

Замечание 1 . Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Замечание 2 .Если старший коэффициент уравнения с целыми коэффициентами равен 1, то все рациональные корни, если они существуют - целые.

Корень многочлена. Корнем многочлена f(x)= a 0 x n +a 1 x n − 1 + +a n − 1 x+a n является x = c , такое, что f (c)=0 .

Замечание 3. Если x = c корень многочлена , то многочлен можно записать в виде: f(x)=(x−c)q(x) , где это частное от деления многочлена f(x) на одночлен x - c

Деление многочлена на одночлен можно выполнить по схеме Горнера:

Если f(x)=a 0 x n +a 1 x n − 1 + +a n − 1 x+a n , a 0 ≠0 , g(x)=x−c , то при делении f (x) на g (x) частное q(x) имеет вид q(x)=b 0 x n − 1 +b 1 x n − 2 + +b n−2 x+b n−1 , где b 0 =a 0 ,

b k =c b k − 1 +a k , k=1, 2, ,n−1. Остаток r находится по формуле r=c b n − 1 +a n

Решение: Коэффициент при старшей степени равен 1, поэтому целые корни уравнения надо искать среди делителей свободного члена: 1; 2; 3; 4; 6; 12. используя схему Горнера, найдем целые корни уравнения:

Если один корень подобран по схеме Горнера. то можно дальше решать так x 3 −x 2 −8x+12=(x−2)(x 2 +x−6)=0 (x−2) 2 (x−3)=0 x=2;x=3

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x 3 – 5x 2 – 2x + 16 = (x – 2)Q (x ) , где Q (x ) − многочлен второй степени. Следовательно, многочлен разлагается на множители, один из которых (x – 2) . Для поиска вида многочлена Q (x ) воспользуемся так называемой схемой Горнера . Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

1 −5 −2 16
2 1 −3 −8 0
В прямоугольную таблицу 2 × (n + 2) , где n − степень многочлена, (см. рис.) в верхнюю строчку выписываются подряд коэффициенты многочлена (левый верхний угол при этом оставляют свободным). В нижний левый угол записывают число − корень многочлена (или число x 0 , если мы хотим разделить на двучлен (x – x 0)), в нашем примере это число 2. Далее вся нижняя строчка таблицы заполняется по следующему правилу.

Во вторую клетку нижней строки «сносится» число из клетки над ней, то есть 1. Затем поступают так. Корень уравнения (число 2) умножают на последнее написанное число (1) и складывают результат с числом, которое стоит в верхнем ряду над следующей свободной клеткой, в нашем примере имеем:

Результат пишем в свободную клетку под −2. Далее поступаем аналогично:
Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак:

Пусть

- многочлен степени n ≥ 1 от действительной или комплексной переменной z с действительными или комплексными коэффициентами a i . Примем без доказательства следующую теорему.

Теорема 1

Уравнение P n (z) = 0 имеет хотя бы один корень.

Докажем следующую лемму.

Лемма 1

Пусть P n (z) - многочлен степени n , z 1 - корень уравнения:
P n (z 1) = 0 .
Тогда P n (z) можно представить единственным способом в виде:
P n (z) = (z - z 1) P n-1 (z) ,
где P n-1 (z) - многочлен степени n - 1 .

Доказательство

Для доказательства, применим теорему (см. Деление и умножение многочлена на многочлен уголком и столбиком), согласно которой для любых двух многочленов P n (z) и Q k (z) , степеней n и k , причем n ≥ k , существует единственное представление в виде:
P n (z) = P n-k (z) Q k (z) + U k-1 (z) ,
где P n-k (z) - многочлен степени n-k , U k-1 (z) - многочлен степени не выше k-1 .

Положим k = 1 , Q k (z) = z - z 1 , тогда
P n (z) = (z - z 1 ) P n-1 (z) + c ,
где c - постоянная. Подставим сюда z = z 1 и учтем, что P n (z 1) = 0 :
P n (z 1 ) = (z 1 - z 1 ) P n-1 (z 1 ) + c ;
0 = 0 + c .
Отсюда c = 0 . Тогда
P n ,
что и требовалось доказать.

Разложение многочлена на множители

Итак, на основании теоремы 1, многочлен P n (z) имеет хотя бы один корень. Обозначим его как z 1 , P n (z 1) = 0 . Тогда на основании леммы 1:
P n (z) = (z - z 1 ) P n-1 (z) .
Далее, если n > 1 , то многочлен P n-1 (z) также имеет хотя бы один корень, который обозначим как z 2 , P n-1 (z 2) = 0 . Тогда
P n-1 (z) = (z - z 2 ) P n-2 (z) ;
P n (z) = (z - z 1 )(z - z 2 ) P n-2 (z) .

Продолжая этот процесс, мы приходим к выводу, что существует n чисел z 1 , z 2 , ... , z n таких, что
P n (z) = (z - z 1 )(z - z 2 ) ... (z - z n ) P 0 (z) .
Но P 0 (z) - это постоянная. Приравнивая коэффициенты при z n , находим что она равна a n . В результате получаем формулу разложения многочлена на множители:
(1) P n (z) = a n (z - z 1 )(z - z 2 ) ... (z - z n ) .

Числа z i являются корнями многочлена P n (z) .

В общем случае не все z i , входящие в (1) , различны. Среди них могут оказаться одинаковые значения. Тогда разложение многочлена на множители (1) можно записать в виде:
(2) P n (z) = a n (z - z 1 ) n 1 (z - z 2 ) n 2 ... (z - z k ) n k ;
.
Здесь z i ≠ z j при i ≠ j . Если n i = 1 , то корень z i называется простым . Он входит в разложение на множители в виде (z-z i ) . Если n i > 1 , то корень z i называется кратным корнем кратности n i . Он входит в разложение на множители в виде произведения n i простых множителей: (z-z i )(z-z i ) ... (z-z i ) = (z-z i ) n i .

Многочлены с действительными коэффициентами

Лемма 2

Если - комплексный корень многочлена с действительными коэффициентами, , то комплексно сопряженное число также является корнем многочлена, .

Доказательство

Действительно, если , и коэффициенты многочлена - действительные числа, то .

Таким образом, комплексные корни входят в разложение на множителями парами со своими комплексно сопряженными значениями:
,
где , - действительные числа.
Тогда разложение (2) многочлена с действительными коэффициентами на множители можно представить в виде, в котором присутствуют только действительные постоянные:
(3) ;
.

Методы разложения многочлена на множители

С учетом сказанного выше, для разложения многочлена на множители, нужно найти все корни уравнения P n (z) = 0 и определить их кратность. Множители с комплексными корнями нужно сгруппировать с комплексно сопряженными. Тогда разложение определяется по формуле (3) .

Таким образом, метод разложения многочлена на множители заключается в следующем:
1. Находим корень z 1 уравнения P n (z 1) = 0 .
2.1. Если корень z 1 действительный, то в разложение добавляем множитель (z - z 1) (z - z 1) 1 :
.
1 (z) , начиная с пункта (1) , пока не найдем все корни.
2.2. Если корень комплексный, то и комплексно сопряженное число является корнем многочлена. Тогда в разложение входит множитель

,
где b 1 = - 2 x 1 , c 1 = x 1 2 + y 1 2 .
В этом случае, в разложение добавляем множитель (z 2 + b 1 z + c 1) и делим многочлен P n (z) на (z 2 + b 1 z + c 1) . В результате получаем многочлен степени n - 2 :
.
Далее повторяем процесс для многочлена P n-2 (z) , начиная с пункта (1) , пока не найдем все корни.

Нахождение корней многочлена

Главной задачей, при разложении многочлена на множители, является нахождение его корней. К сожалению, не всегда это можно сделать аналитически. Здесь мы разберем несколько случаев, когда можно найти корни многочлена аналитически.

Корни многочлена первой степени

Многочлен первой степени - это линейная функция. Она имеет один корень. Разложение имеет только один множитель, содержащий переменную z :
.

Корни многочлена второй степени

Чтобы найти корни многочлена второй степени, нужно решить квадратное уравнение:
P 2 (z) = a 2 z 2 + a 1 z + a 0 = 0 .
Если дискриминант , то уравнение имеет два действительных корня:
, .
Тогда разложение на множители имеет вид:
.
Если дискриминант D = 0 , то уравнение имеет один двукратный корень:
;
.
Если дискриминант D < 0 , то корни уравнения комплексные,
.

Многочлены степени выше второй

Существуют формулы для нахождения корней многочленов 3-ей и 4-ой степеней. Однако ими редко пользуются, поскольку они громоздкие. Формул для нахождения корней многочленов степени выше 4-ой нет. Несмотря на это, в некоторых случаях, удается разложить многочлен на множители.

Нахождение целых корней

Если известно, что многочлен, у которого коэффициенты - целые числа, имеет целый корень, то его можно найти, перебрав все возможные значения.

Лемма 3

Пусть многочлен
,
коэффициенты a i которого - целые числа, имеет целый корень z 1 . Тогда этот корень является делителем числа a 0 .

Доказательство

Перепишем уравнение P n (z 1) = 0 в виде:
.
Тогда - целое,
M z 1 = - a 0 .
Разделим на z 1 :
.
Поскольку M - целое, то и - целое. Что и требовалось доказать.

Поэтому, если коэффициенты многочлена - целые числа, то можно попытаться найти целые корни. Для этого нужно найти все делители свободного члена a 0 и, подстановкой в уравнение P n (z) = 0 , проверить, являются ли они корнями этого уравнения.
Примечание . Если коэффициенты многочлена - рациональные числа, , то умножая уравнение P n (z) = 0 на общий знаменатель чисел a i , получим уравнение для многочлена с целыми коэффициентами.

Нахождение рациональных корней

Если коэффициенты многочлена - целые числа и целых корней нет, то при a n ≠ 1 , можно попытаться найти рациональные корни. Для этого нужно сделать подстановку
z = y/a n
и умножить уравнение на a n n-1 . В результате мы получим уравнение для многочлена от переменной y с целыми коэффициентами.Далее ищем целые корни этого многочлена среди делителей свободного члена. Если мы нашли такой корень y i , то перейдя к переменной x , получаем рациональный корень
z i = y i /a n .

Полезные формулы

Приведем формулы, с помощью которых можно разложить многочлен на множители.





В более общем случае, чтобы разложить многочлен
P n (z) = z n - a 0 ,
где a 0 - комплексное, нужно найти все его корни, то есть решить уравнение:
z n = a 0 .
Это уравнение легко решается, если выразить a 0 через модуль r и аргумент φ :
.
Поскольку a 0 не изменится, если к аргументу прибавить 2 π , то представим a 0 в виде:
,
где k - целое. Тогда
;
.
Присваивая k значения k = 0, 1, 2, ... n-1 , получаем n корней многочлена. Тогда его разложение на множители имеет вид:
.

Биквадратный многочлен

Рассмотрим биквадратный многочлен:
.
Биквадратный многочлен можно разложить на множители, без нахождения корней.

При , имеем:

,
где .

Бикубический и многочлены, приводящиеся к квадратному

Рассмотрим многочлен:
.
Его корни определяются из уравнения:
.
Оно приводится к квадратному уравнению подстановкой t = z n :
a 2 n t 2 + a n t + a 0 = 0 .
Решив это уравнение, найдем его корни, t 1 , t 2 . После чего находим разложение в виде:
.
Далее методом, указанным выше, раскладываем на множители z n - t 1 и z n - t 2 . В заключении группируем множители, содержащие комплексно сопряженные корни.

Возвратные многочлены

Многочлен называется возвратным , если его коэффициенты симметричны:

Пример возвратного многочлена:
.

Если степень возвратного многочлена n - нечетна, то такой многочлен имеет корень z = -1 . Разделив такой многочлен на z + 1 , получим возвратный многочлен степени

Читайте также: