Биохимические особенности взаимоотношения организма и среды. Физиологические и биохимические основы адаптации Биохимическая адаптация виды механизмы

В течение всей жизни организмы приспосабливаются к непрерывно меняющимся факторам внешней и внутренней среды. При этом непременным и единственным условием жизни живых организмов является постоянство внутренней среды, т.е. гомеостаз. Относительное динамическое постоянство среды организма и функционирование всех органов и систем, необходимое для сохранения жизни поддерживаются приспособительными или адаптивными реакциями организма.

Адаптация - это система внутреннего и взаимного прилаживания организма и вышестоящих биологических, экологических и других систем друг к другу при определяющей роли последних.

Различают следующие уровни адаптации:

субклеточный (усиление синтеза нуклеиновых кислот и белков, активация митохондриального аппарата клетки, как энергетической станции клетки).

клеточный

тканевой

отдельного органа

отдельной системы органов

целостного организма

групповой

популяционный

биоценотический

экосферный.

Не следует рассматривать понятие адаптации применимо только к отдельному организму, адаптация - это процесс поддержания всей экосферы в относительно стабильном состоянии, т.е. ее гомеостаза и отдельные организмы являются лишь звеньями этого механизма.

С физиологической и патофизиологической точек зрения понятия "приспособление", "норма" и "патология" должны даваться только в целях обоснования взгляда, что нормологический и патологический процессы являются различными качественными проявлениями одного и того же процесса - приспособления или адаптации. При этом патология не всегда является адаптивной аномалией, как и адаптивной нормой.

Исходя из этого все болезни являются результатом ошибок в адаптивных реакциях на внешние раздражители, с этой точки зрения большая часть болезней (нервные расстройства, ГБ, ЯБЖ и ЯБДК, некоторые типы ревматических, аллергические, сердечно-сосудистые заболевания и почечные болезни) являются болезнями адаптации, т.е. патологические процессы и болезни это всего лишь особенности приспособительных реакций.

Одним из путей сохранения гомеостаза является реагирование - развитие общих адаптационных реакций. Развитие этих реакций подчинено количественно-качественному принципу: на различное количество раздражителя организм отвечает качественно разными реакциями. При этом количество (мера) является общим в действии самых различных по качеству раздражителей и служит основой формирования нескольких стандартных ответов организма. Качество раздражителя накладывается на этот стандартный ответ как основа.

При этом следует различать меру и норму адаптации. Выделяют индивидуальную, строго детерминированную неповторимую норму и популяционную (видовую) норму, являющуюся в своей основе статистической, вероятностной (референтные величины). В медицинской диагностике, лечении и профилактики болезней необходимо учитывать обе нормы. Каждая конкретная норма строго индивидуальна и практически каждый человек представляет собой в том или ином отношении отклонение от нормы.

Согласно теории адаптационных реакций в зависимости от силы (меры) воздействия, в организме могут развиваться 3 типа адаптационных реакций:

реакция на слабые воздействия - реакция тренировки

реакция на воздействия средней силы - реакция активации

реакция на сильные, чрезвычайные воздействия - стресс-реакция по Г. Селье.

Реакция тренировки имеет 3 стадии: стадию ориентировки, стадию перестройки, стадию тренированности. В ЦНС преобладает охранительное торможение. В эндокринной системе вначале умеренно повышается активность глюко- и минералокортикоидных гормонов, а затем постепенно увеличивается секреция МК и нормализуется секреция ГК на фоне умеренно повышенной функциональной активности щитовидной и половых желез.

Реакция активации имеет 2 стадии: стадию первичной активации и стадию стойкой активации. В ЦНС преобладает умеренное, физиологическое возбуждение. В эндокринной системе отмечается увеличение секреции МК при нормальной секреции ГК и повышении функциональной активности щитовидной и половых желез. Повышение активности желез внутренней секреции выражено больше, чем при реакции тренировки, но не носит характера патологической гиперфункции. В обеих стадиях реакции активации повышается активная резистентность к повреждающим агентам различной природы.

Реакция активации подразделяется на спокойную активацию (СА) и повышенную активацию (ПА). ПА вызывается раздражителями, несколько большими по абсолютной величине, чем СА. При ПА наблюдаются большие сдвиги в АД, уровне ГК и энергетическом обмене.

Реакции тренировки и реакция адаптации - это те адаптационные реакции, которые встречаются в течение нормальной жизни организма.

Реакция стресса развивается в ответ на сверхсильные раздражители. Стресс, является неспецифической основой патологических процессов - синдромом болезни вообще, что способствует пониманию общности в течение различных патологических процессов, что помогает не только вскрыть патогенез, но и обосновать терапию целого ряда болезней. В настоящее время считают, что на основе стресса развивается около 10 000 заболеваний и более 100 тысяч симптомов болезней.

Стресс-теория Селье. Реакция организма не зависит от качества раздражителя, а зависит только от силы действия раздражителя. В первой стадии стресса - реакции тревоги, длящейся 24-48 часов происходит выброс в кровь А надпочечниками, стимуляция секреции АКТГ гипофиза, приводящая к повышению секреции ГК коры надпочечников. Угнетается секреция МК.

После реакции тревоги наступает стадия резистентности. В этой стадии устойчивость к внешним раздражителям повышена.

Если действие стрессора повторяется или он очень сильный, то стадия резистентности переходит в стадию истощения. Характер изменений близок к тому, что наблюдается при реакции тревоги: ГК преобладают над МК, снижена активность щитовидной и половых желез, иммунной системы.

В чем же биологический смысл первой стадии - реакции тревоги?

При встрече с сильным раздражителем основная задача - любой ценой получить энергию в короткие сроки, чтобы обеспечить необходимые условия для "битвы" или "бегства". Быстрый выброс энергии мобилизуется А и ГК даже невыгодным путем за счет распада жиров, углеводов и белков (прежде всего лимфоидной ткани). ГК в больших количествах угнетают тимус, лимфатические железы, иммунные реакции, а также участвуют в п/воспалительных реакциях, т.е. подавляют деятельность защитных систем организма. МК, оказывающие противоположное влияние на восп. процессы наоборот, угнетены. Эти изменения биологически целесообразны, т.к. защитный ответ, адекватный большой силе раздражителя (например, воспалительная реакция), мог бы привести организм к гибели. Если бы не развивалась иммунодепрессия, то при стрессе в условиях повреждения тканей в постстрессорный период могли бы возникнуть аутоиммунные заболевания. Поэтому вначале организму приходится не усиливать, а ослаблять свой ответ: в ответ на действие сильного раздражителя активность основных защитных систем не нарастает, а падает.

Все эти приспособительные изменения, происходящие в первую стадию стресса, могут вызывать тяжелые последствия в организме, особенно в условиях гипокинезии и гиподинамии, когда изменения, присущие стрессу, не реализуются на мышечную работу. Реакция тревоги - это пример того случая в организме, когда защита достигается ценой повреждения.

Но как представить себе, почему вслед за реакцией тревоги, т.е. на фоне угнетения защитных сил организма, формируется без каких-либо дополнительных воздействий стадия резистентности, т.е. происходит нормализация или даже повышение устойчивости? Известно, что в ЦНС под влиянием сильных раздражителей развивается резкое возбуждение, которое затем сменяется запредельным торможением - "крайней мерой защиты" по И.П. Павлову. При запредельном торможении чувствительность центральных нервных аппаратов понижается, благодаря этому падающие на организм другие сильные воздействия уже воспринимаются не как сильные, и тем самым устойчивость организма повышается. Т.о. переход стадии тревоги в стадию резистентности связан с запредельным торможением в ЦНС.

Стадия истощения еще в большей степени, чем стадия тревоги, является примером такого состояния, когда сохранение жизни достигается ценой повреждения. В наиболее тяжелых случаях эта стадия может привести к гибели.

Все реакции организма иметь нечто общее в ответной реакции на разные по качеству раздражители, сформировать основу для стандартного приспособительного ответа. Качество не может явиться такой основой, так как каждому раздражителю присуще свое качество. Общее, что характеризует действие самых различных раздражителей, - это количество, определяемое в отношении живого как степень биологической активности. Количество, мера является основой общности реакции организма на действие разных по качеству раздражителей, основой для развития в процессе эволюции биологически целесообразных комплексных, стандартных ответных реакций организма.

В основе механизмов неспецифических адаптационных реакций лежат общие принципы.

Эти комплексные реакции характеризуются, прежде всего, автоматизмом. Важнейшая роль в приспособлении принадлежит ЦНС - основной регулирующей системе организма. Кора ГМ с системой анализаторов принимает информацию от внешнего мира, подкорковые образования ГМ - от внутренней среды. Автоматическая регуляция постоянства внутренней среды осуществляется, главным образом, гипоталамической областью ГМ, являющейся центром интеграции вегетативного отдела НС и эндокринной системы - основных исполнительных звеньев, реализующих влияние ЦНС на внутреннюю среду организма. В гипоталамусе сочетаются нервный и гуморальный пути автоматической регуляции. В осуществлении адаптивных функций принимают участие все системы организма, при этом ГМ является высшим координаторным центром адаптационных процессов.

При действии слабых, пороговых (для общих реакций) раздражений развивается реакция тренировки. В ЦНС при этом преобладает охранительное торможение. Биологическая целесообразность этого - в снижении возбудимости, реактивности по отношению к слабому раздражителю, на который наиболее целесообразно не отвечать.

При действии раздражителей средней силы происходит развитие "реакции активации". В ГМ преобладает умеренное возбуждение. По-видимому, раздражение средней силы является оптимальным для возбуждения защитной деятельности организма. На такое раздражение наиболее целесообразно реагировать путем первичной активации защитных систем организма.

При действии сильных, чрезвычайных раздражителей (реакции стресс) в ЦНС развивается резкое возбуждение, сменяющееся запредельным торможением - крайней мерой защиты. Биологическая целесообразность этого - в снижении возбудимости, реактивности, так как адекватный чрезмерной силе ответ мог бы погубить организм. Затем, вследствие снижения реактивности, сильные воздействия уже не воспринимаются как сильные, развивается стадия резистентности. Снижение возбудимости при развитии запредельного торможения приводит к тому, что сильные раздражители (в случае повторения действия стрессора) уже не являются для организма сильными и вызывают развитие не стресса, а реакции активации или даже тренировки. Если же действие стрессора не повторяется и на организм падают обычные раздражители физиологических параметров, развивается чаще реакция тренировки, но возможно развитие и реакции активации. Если действие стрессора систематически повторяется или разовый стрессор был чрезвычайно сильным, стадия резистентности переходит в стадию истощения, которая может привести к гибели.

Таким образом, фактически нервная система организует патологический процесс. Все адаптационные реакции формируются в ЦНС, в частности в гипоталамусе. В ЦНС формируется и реакции стресс, являющейся неспецифической основой патологического процесса.

Там же формируются реакции тренировки и активации, являющиеся неспецифической основой нормы и повышающие неспецифическую резистентность организма, т.е. иными словами НС организует и защиту от патологических процессов.

    Эволюция адаптации – основной результат действия естественного отбора. Классификация адаптации: морфологические, физиолого-биохимические, этологические, видовые адаптации: конгруэнции и кооперации. Относительность органической целесообразности.

Ответ: Адаптацией считается любая особенность особи, популяции, вида или сообщества организмов, которая способствует успеху в конкуренции и обеспечивает устойчивость к абиотическим факторам. Это позволяет организмам существовать в данных условиях среды и оставлять потомство. Критериями адаптации являются: жизнеспособность, конкурентоспособность и фертильность.

Виды адаптации

Все адаптации делят на аккомодации и эволюционные адаптации. Аккомодации представляют собой обратимый процесс. Они возникают при резком изменении условий среды. Например, при переселении животные попадают в новую для них обстановку, но постепенно привыкают к ней. Например, человек, переселившийся из средней полосы в тропики или на Крайний Север, некоторое время испытывает дискомфорт, но со временем привыкает к новым условиям. Эволюционная адаптация необратима и возникшие изменения генетически закрепляются. Сюда относят все приспособления, на которые действует естественный отбор. Например, покровительственная окраска или быстрый бег.

Морфологические адаптации проявляются в преимуществах строения, покровительственной окраске, предостерегающей окраске, мимикрии, маскировке, приспособительном поведении.

Преимущества строения – это оптимальные пропорции тела, расположение и густота волосяного или перьевого покрова и т.п. Хорошо известен облик водного млекопитающего – дельфина.

Мимикрия – это результат гомологичных (одинаковых) мутаций у разных видов, которые помогают выжить незащищённым животным.

Маскировка – приспособления, при которых форма тела и окраска животных сливаются с окружающими предметами

Физиологические адаптации - приобретение специфических особенностей обмена веществ в разных условиях среды. Они обеспечивают функциональные преимущества организма. Их условно разделяют на статические (постоянные физиологические параметры - температура, водно-солевой баланс, концентрация сахара и т. п.) и динамические (адаптации к колебаниям действия фактора - изменение температуры, влажности, освещенности, магнитного поля и т. п.). Без такой адаптации невозможно поддержание устойчивого обмена веществ в организме в постоянно колеблющихся условиях внешней среды. Приведем некоторые примеры. У наземных амфибий большое количество воды теряется через кожу. Однако многие их виды проникают даже в пустыни и полупустыни. Очень интересны приспособления, развивающиеся у ныряющих животных. Многие из них могут сравнительно долго обходиться без доступа кислорода. Например, тюлени ныряют на глубину 100-200 и даже 600 метров и находятся под водой 40-60 минут. Поразительно чувствительны органы химического чувства насекомых.

Биохимические адаптации обеспечивают оптимальное течение биохимических реакций в клетке, например, упорядочение ферментативного катализа, специфическое связывание газов дыхательными пигментами, синтез нужных веществ в определенных условиях и т. п.

Этологические адаптации представляют собой все поведенческие реакции, направленные на выживание отдельных особей и, следовательно, вида в целом. Такими реакциями являются:

Поведение при поиске пищи и полового партнера,

Спаривание,

Выкармливание потомства,

Избегание опасности и защита жизни в случае угрозы,

Агрессия и угрожающие позы,

Незлобивость и многие другие.

Некоторые поведенческие реакции наследуются (инстинкты), другие приобретаются в течение жизни (условные рефлексы).

Видовые адаптации обнаруживаются при анализе группы особей одного вида, по своему проявлению они весьма разнообразны. Основными из них являются различные конгруэнции, уровень мутабильности, внутривидовой полиморфизм, уровень численности и оптимальная плотность населения.

Конгруэнции представляют собой все морфофизиологические и поведенческие особенности, которые способствуют существованию вида как целостной системы. Репродуктивные конгруэнции обеспечивают размножение. Некоторые из них непосредственно связаны с репродукцией (соответствие половых органов, приспособления к вскармливанию и др.), тогда как другие лишь опосредованно (различные сигнальные признаки: зрительные - брачный наряд, ритуальное поведение; звуковые - пение птиц, рев самца оленя во время гона и др.; химическими - различные аттрактанты, например, феромоны насекомых, выделения у парнокопытных, кошачьих, собачьих и др.).

К конгруэнциям относят все формы внутривидовой кооперации ,- конституциональной, трофической и репродуктивной. Конституциональная кооперация выражается в согласованных действиях организмов в неблагоприятных условиях, которые повышают шансы на выживание. Зимой пчелы собираются в шар, и выделяемое ими тепло расходуется на совместное согревание. При этом самая высокая температура будет в центре шара и особи с периферии (где холоднее) будут постоянно стремиться туда. Таким образом происходит постоянное перемещение насекомых и они совместными усилиями благополучно перезимуют. Также сбиваются в тесную группу пингвины во время насиживания, овцы в холодное время и др.

Трофическая кооперация состоит в объединении организмов с целью добывания пищи. Совместная деятельность в этом направлении делает процесс более продуктивным. Например, стая волков гораздо эффективнее охотится, нежели отдельная особь. При этом у многих видов имеет место разделение обязанностей - одни особи отделяют выбранную жертву от основного стада и гонят ее в засаду, где затаились их сородичи и т. д. У растений подобная кооперация выражается в совместном затенении почвы, что способствует удержанию в ней влаги.

Репродуктивная кооперация повышает успешность размножения и способствует выживанию потомства. У многих птиц особи собираются на токовищах, и в таких условиях облегчается поиск потенциального партнера. То же самое происходит на нерестилищах, лежбищах ластоногих и др. Вероятность опыления у растений повышается, когда они растут группами и расстояние между отдельными особями невелико.

Закон органической целесообразности, или закон Аристотеля

1. Чем глубже и разностороннее изучает наука живые формы, тем полнее раскрывается их целесо­образность, т. е. целенаправленный, гармоничный, как бы разумный характер их организации, инди­видуального развития и отношения с окружающей средой. Органическая целесообразность раскрыва­ется в процессе познания биологической роли кон­кретных особенностей живых форм.

2. Целесообразность присуща всем видам. Она выражается в тонком взаимном соответствии струк­тур и назначения биологических объектов, в при­способленности живых форм к условиям жизни, в естественной целенаправленности особенностей ин­дивидуального развития, в приспособительном ха­рактере форм существования и поведения биологи­ческих видов.

3. Органическая целесообразность, ставшая предметом анализа античной науки и служившая основанием для телеологических и религиозных истолкований живой природы, получила материа­листическое объяснение в учении Дарвина о твор­ческой роли естественного отбора, проявляющейся в адаптивном характере биологической эволюции.

Такова современная формулировка тех обобщений, истоки которых восходят к Аристотелю, выдвинувшему представления о целевых причинах.

Изучение конкретных проявлений органической целе­сообразности одна из важнейших задач биологии. Выяс­нив, для чего служит та или иная особенность исследуе­мого биологического объекта, в чем биологическое зна­чение этой особенности, мы благодаря эволюционной теории Дарвина приближаемся к ответу на вопрос, по­чему и каким образом она возникла. Рассмотрим про­явления органической целесообразности на примерах, относящихся к различным областям биологии.

В области цитологии яркий, наглядный пример орга­нической целесообразности - деление клеток у расте­ний и животных. Механизмы эквационного (митоз) и ре­дукционного (мейоз) деления обусловливают постоянст­во числа хромосом в клетках данного вида растений или животных. Удвоение диплоидного набора в митозе обеспечивает сохранение постоянства числа хромосом в делящихся соматических клетках. Гаплоидизация хро­мосомного набора при образовании половых клеток и восстановление его при образовании зиготы в результа­те слияния половых клеток обеспечивают сохранение числа хромосом при половом размножении. Отклонения от нормы, приводящие к полиплоидизации клеток, т. е. к умножению числа хромосом против нормального, от­секаются стабилизирующим действием естественного от­бора или служат условием генетического обособления, изоляции полиплоидной формы с возможным превраще­нием ее в новый вид. При этом в действие вновь вступа­ют цитогенетические механизмы, обусловливающие со­хранение хромосомного набора, но уже на новом, поли­плоидном, уровне.

В процессе индивидуального развития многоклеточ­ного организма происходит образование клеток, тканей и органов различного функционального назначения. Со­ответствие этих структур их назначению, их взаимодей­ствие в процессе развития и функционирования организ­ма - характерные проявления органической целесооб­разности.

Обширную область примеров органической целесооб­разности представляют приспособления для размноже­ния и распространения живых форм. Назовем некоторые из них. Например, споры бактерий обладают высокой устойчивостью к неблагоприятным условиям среды. Цветковые растения приспособлены к перекрестному опылению, в частности с помощью насекомых. Плоды и семена ряда растений приспособлены к распространению с помощью животных. Половые инстинкты и инстинкты заботы о потомстве характерны для животных самого различного уровня организации. Строение икры и яиц обеспечивает развитие животных в соответствующей среде. Молочные железы обеспечивают полноценное питание потомства у млеко­питающих.

    Современные концепции вида. Реальность существования и биологическое значение видов.

Ответ: Вид является одной из основных форм организации жизни на Земле и основной единицей классификации биологического разнообразия. Разнообразие современных видов огромно. По различным оценкам в настоящее время на Земле обитает около 2-2,5 млн. видов (до 1,5-2 млн. видов животных и до 500 тыс. видов растений). Процесс описания новых видов непрерывно продолжается. Каждый год описываются сотни и тысячи новых видов насекомых и других беспозвоночных животных, микроорганизмов. Распределение видов по классам, семействам и родам очень неравномерно. Есть группы с огромным числом видов и группы – даже высокого таксономического ранга, – представленные немногими видами в современной фауне и флоре. Например, целый подкласс рептилий представлен лишь одним видом – гаттерией.

В тоже время современное видовое разнообразие значительно меньше числа вымерших видов. Из-за хозяйственной деятельности человека ежегодно вымирает огромное число видов. Поскольку сохранение биоразнообразия – непременное условие существования человечества, то эта проблема сегодня становится глобальной. К. Линней заложил основы современной систематики живых организмов (Система природы, 1735). К.Линней установил, что в пределах вида многие существенные признаки меняются постепенно, так что их можно выстроить в непрерывный ряд. К. Линней рассматривал виды как объективно существующие группы живых организмов, достаточно легко отличимые друг от друга.

Биологическая концепция вида. Биологическая концепция сформировалась в 30-х-60-х годах XX в. на базе синтетической теории эволюции и данных по структуре видов. С наибольшей полнотой она разработана в книге Майра «Зоологический вид и эволюция» (1968).Майр сформулировал биологическую концепцию в виде трех пунктов: виды определяются не различиями, а обособленностью; виды состоят не из независимых особей, а из популяций; виды определяют, исходя из их отношения к популяциям других видов. Решающим критерием является не плодовитость при скрещивании, а репродуктивная изоляция». Таким образом, согласно биологической концепции вид – это группа фактически или потенциально скрещивающихся популяций, репродуктивно изолированных от других таких же популяций. Эту концепцию также называют политипической. Положительной стороной биологической концепции является ясная теоретическая база, хорошо разработанная в трудах Майра и других сторонников этой концепции. Вместе с тем, эта концепция неприменима для видов, размножающихся половым путем и в палеонтологии. Морфологическая концепция вида сформировалась на базе типологической, точнее, на базе многомерного политипического вида. В тоже время она представляет собой шаг вперед, по сравнению с этими концепциями. Согласно ей вид – это совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих в природе определенную область – ареал. Таким образом, в современной литературе обсуждаются и применяются в основном две концепции вида: биологическая и морфологическая (таксономическая).

Реальность существования и биологическое значение видов .

Существовать для объектов биологической науки – значит, обладать предметно-онтологическими характеристиками биологической реальности. Исходя из этого, проблема существования гена, вида и т.п. «разрешается на языке этого уровня построением соответствующих экспериментальных и «наблюдательных» методик, гипотез, концепций, предполагающих эти сущности в качестве элементов своей предметной реальности». Биологическая реальность формировалась с учетом существования различных уровней «живого», что представляет собой сложную иерархию развития биологических объектов и их связей.

Биологическое разнообразие является главным источником удовлетворения многих потребностей человека и служит основой его приспособления к изменяющимся условиям окружающей среды. Практическая ценность биоразнообразия заключается в том, что это по сути неиссякаемый источник биологических ресурсов. Это прежде всего продукты питания, лекарства, источники сырья для одежды, производства строительных материалов и т.д. Биоразнообразие имеет огромное значение для организации отдыха человека.

Биоразнообразие обеспечивает генетическими ресурсами сельское хозяйство, составляет биологическую базу для всемирной продовольственной безопасности и является необходимым условием существования человечества. Ряд дикорастущих растений, родственных сельскохозяйственным культурам, имеет очень большое значение для экономики на национальном и глобальном уровнях. Например, эфиопские сорта калифорнийского ячменя обеспечивают защиту от болезнетворных вирусов, в денежном выражении составляющую 160 млн дол. США в год. Генетическая устойчивость к заболеваниям, достигаемая с помощью диких сортов пшеницы, в Турции оценивается в 50 млн дол

1. Поддержание структурной целостности макромолекул (ферментов сократительных белков, нуклеиновых кислот и др.) при их функционировании в специфических условиях.

2. Достаточное снабжение клетки:

а) энергетической валютой - аденозинтрифосфатом (АТФ);

б) восстановительными эквивалентами, необходимыми для протекания процессов биосинтеза;

в) предшественниками, используемыми при синтезе запасных веществ (гликогена, жиров и т.п.), нуклеиновых кислот и белков.

3. Поддержание систем, регулирующих скорости и направления метаболических процессов в соответствии с потребностями организма и их изменениями при изменении условий среды.

Выделяют три типа механизмов биохимической адаптации.

1. Приспособление макромолекулярных компонентов клетки или жидкостей организма:

а) изменяются количества (концентрации) уже имеющихся типов макромолекул, например ферментов;

б) образуются макромолекулы новых типов, например новые изоферменты, которыми замещаются макромолекулы, ранее имевшиеся в клетке, но ставшие не вполне пригодными для работы в изменившихся условиях.

2. Приспособление микросреды, в которой функционируют макромолекулы. Сущность этого механизма состоит в том, что адаптивное изменение структурных и функциональных свойств макромолекул достигается путем видоизменения качественного и количественного состава окружающей эти макромолекулысреды (например, ее осмотической концентрации или состава растворенных веществ).

3. Приспособление на функциональном уровне. Его сущность состоит в регулировании функциональной активности макромолекул, ранее синтезированных клеткой.

Под стратегией адаптации понимают функционально-временную структуру потоков информации, энергии, веществ, обеспечивающую оптимальный уровень морфофункциональной организации биосистем в неадекватных условиях среды.

Можно выделить три варианта "стратегии" адаптивного поведения организма человека.

1. Первый тип (стратегия типа "спринтер"): организм обладает способностью мощных физиологических реакций с высокой степенью надежности в ответ на значительные, но кратковременные колебания во внешней среде. Однако такой высокий уровень физиологических реакций может поддерживаться относительно короткий срок. К длительным физиологическим перегрузкам со стороны внешних факторов, даже если они средней величины, такие организмы мало приспособлены.

2. Второй тип (стратегия типа "стайер"). Организм менее устойчив к кратковременным значительным колебаниям среды, но обладает свойством выдерживать длительное время физиологические нагрузки средней силы.

3. Наиболее оптимальным типом стратегии является промежуточный тип, который занимает среднее положение между указанными крайними типами.


Формирование стратегии адаптации генетически детерминировано, но в процессе индивидуальной жизни, соответствующего воспитания и тренировки их варианты могут подвергаться коррекции. Следует отметить, что у одного и того же человека разные гомеостатические системы могут иметь различные стратегии физиологической адаптации.

Установлено, что у людей с преобладанием стратегии первого типа (тип "спринтер") одновременное сочетание работы и восстановительных процессов выражено слабо и для указанных процессов требуется более четкая ритмичность (т.е. расчленение во времени).

У людей же с преобладанием стратегии 2-го типа (тип "стайер"), напротив, резервные возможности и степень быстрой мобилизации не высоки, однако рабочие процессы более легко сочетаются с процессами восстановления, что обеспечивает возможность длительной нагрузки.

Так, в условиях северных широт у людей с вариантами стратегии типа "спринтер" наблюдается быстрое истощение и нарушение липидно-энергетического обмена, что приводит к развитию хронических патологических процессов. В то же время у людей, относящихся к варианту стратегии "стайер", приспособительные реакции к специфическим условиям высоких широт наиболее адекватны и позволяют им длительное время находиться в этих условиях без развития патологических процессов.

В целях определения эффективности адаптационных процессов были разработаны определенные критерии и методы диагностики функциональных состояний организма.

Р.М. Баевским (1981) предложено учитывать пять основных критериев:

■ 1 - уровень функционирования физиологических систем;

■ 2 - степень напряжения регуляторных механизмов;

■ 3 - функциональный резерв;

■ 4 - степень компенсации;

■ 5 - уравновешенность элементов функциональной системы.

В качестве индикатора функционального состояния целостного организма может рассматриваться система кровообращения, в частности три ее свойства, с помощью которых можно оценить переход от одного функционального состояния к другому.

1. Уровень функционирования. Под ним следует понимать поддержание определенных значений основных показателей миокардиально-гемодинамического гомеостаза, таких, как ударный и минутный объем, частота пульса и АД.

2. Функциональный резерв. Для его оценки обычно применяют функциональные нагрузочные пробы, например ортостатическую или с физической нагрузкой.

3. Степень напряжения регуляторных механизмов, которая определяется показателями вегетативного гомеостаза, например степенью активации симпатического отдела вегетативной нервной системы и уровнем возбуждения вазомоторного центра.

Классификация функциональных состояний при развитии болезней адаптации (Баевский Р.М., 1980).

1. Состояние удовлетворительной адаптации к условиям окружающей среды. Для этого состояния характерны достаточные функциональные возможности организма, гомеостаз поддерживается при минимальном напряжении регуляторных систем организма. Функциональный резерв не снижен.

2. Состояние напряжения адаптационных механизмов. Функциональные возможности организма не снижены. Гомеостаз поддерживается благодаря определенному напряжению регуляторных систем. Функциональный резерв не снижен.

3. Состояние неудовлетворительной адаптации к условиям окружающей среды. Функциональные возможности организма снижены. Гомеостаз сохраняется благодаря значительному напряжению регуляторных систем либо благодаря включению компенсаторных механизмов. Функциональный резерв снижен.

4. Срыв (поломка) механизмов адаптации. Резкое снижение функциональных возможностей организма. Гомеостаз нарушен. Функциональный резерв резко снижен.

Дезадаптация и развитие патологических состояний происходит поэтапно.

Начальный этап пограничной зоны между здоровьем и патологией - это состояние функционального напряжения механизмов адаптации. Состояние напряжения адаптационных механизмов, не выявляемое при традиционном клиническом обследовании, следует относить к дозонологическим, т.е. предшествующим развитию заболевания.

Более поздний этап пограничной зоны - состояние неудовлетворительной адаптации. Для него характерно уменьшение уровня функционирования биосистемы, рассогласование отдельных ее элементов, развитие утомления и переутомления. Состояние неудовлетворительной адаптации является активным приспособительным процессом. Состояние неудовлетворенной адаптации может быть отнесено к преморбидным, поскольку значительное снижение функционального резерва позволяет при использовании функциональных проб выявить неадекватный ответ организма, указывающий на скрытую или начальную патологию.

С клинической точки зрения только срыв адаптации относится к патологическим состояниям, ибо он сопровождается заметными изменениями традиционно измеряемых показателей, таких, как частота пульса, ударный и минутный объем, АД и т.д.

По своим проявлениям болезни адаптации носят полиморфный характер, охватывая различные системы организма. Наиболее распространены болезни адаптации при длительном пребывании людей в неблагоприятных условиях (горная болезнь и т.д.). Поэтому для профилактики болезней адаптации используют методы увеличения эффективности адаптации.

Методы увеличения эффективности адаптации могут быть специфическими и неспецифическими.

К неспецифическим методам относятся: активный отдых, закаливание, средние физические нагрузки, адаптогены и терапевтические дозировки разнообразных курортных факторов, которые способны повысить неспецифическую резистентность, нормализовать деятельность основных систем организма.

Адаптогены - это средства, осуществляющие фармакологическую регуляцию адаптивных процессов в организме. По своему происхождению адаптогены могут быть разделены на две группы: природные и синтетические. Источниками природных адаптогенов являются наземные и водные растения, животные и микроорганизмы. К наиболее важным адаптогенам растительного происхождения относятся женьшень, элеутерококк, лимонник китайский, аралия маньчжурская, заманиха, шиповник и т.д. К препаратам животного происхождения относятся: пантокрин, получаемый из пантов марала; рантарин - из пантов северного оленя, апилак - из пчелиного маточного молочка.

Широкое применение получили вещества, выделенные из различных микроорганизмов и дрожжей (продигиоган, зимозан и др.). Высокой адаптогенной активностью обладают витамины. Многие эффективные синтетические соединения получены из природных продуктов (нефть, уголь и т.п.).

Специфические методы увеличения эффективности адаптации основаны на повышении резистентности организма к какому-либо определенному фактору среды - холоду, гипоксии и т.д. К ним относятся лекарственные средства, физиотерапевтические процедуры, специальные тренировки и т.д. (Гора Е.П., 1999).

Определение стресса

Стресс (англ. стресс – напряжение) неспецифическая реакция напряжения живого организма в ответ на любое сильное воздействие. Это состояние критической нагрузки, которое проявляется в виде специфического синдрома, слагающегося из неспецифических изменений внутри биологического объекта.

Концепция стресса и адаптационного синдрома, разработана канадским ученым Гансом Селье в 1936 году для человека.Механизм развития общего адаптационного синдрома и стресс-реакции по Г. Селье представлен на рисунке 2.

Рис. 2. Три фазы общего адаптационного синдрома (А) и основные пути формирования стресс-реакции (Б) (по Г. Селье)

В ответ на любой стрессовый фактор, нарушающий гомеостаз, развиваются ответные реакции двух типов:

1)специализированными реакциями со стороны организма, специфически реагирующей на этот раздражитель, в зависимости от его природы, присущими только данной системе;

2)в виде комплекса неспецифических изменений, таких как реакции напряжения или общего усилия организма приспособиться к изменившимся условиям, с помощью стрессреализующей адренергической и гипофизарно-адреналовойсистемы.

Общий адаптационный синдром â

üэто сложный процессструктурно-функциональнойперестройки, нацеленный на перепрограммирование адаптационных возможностей организма в целях решения новых задач, выдвигаемым средой;

üпроцесс, который способствует образованию новой структурно-функциональнойорганизации организма и более совершенного, соответствующего данным условиям, состояния гомеостаза;

üпроцесс, который приводит, в конечном итоге, к изменениям фенотипа.

Патологические процессы, развивающиеся при общем адаптационном синдроме

Катаболический эффект стресс-синдроманаправлен на стирание старых, утративших свое биологическое значение, структурных следов.

Десинхроноз – универсальная реакция, неотъемлемая часть общего адаптационного синдрома, процесс разрушения старого биоритмологического стереотипа, изменения прежних биологических ритмов для формирования нового ритмологического стереотипа.

Классификация стрессовых факторов:

Практически любой фактор среды может принимать экстремальный характер.

Различают: положительный и отрицательный стресс (дистресс).

Наиболее тяжелая форма дистресса – шок.

Стрессовые факторы классифицируются:

II. По влиянию на состояние организма: – (на обмен веществ, проницаемость мембран, биоритмы и т.д.);

III. По времени влияния: влияют периодически (сезонность и т.д.);эпизодически (пожары, наводнения и т.д.).

IV. По характеру вмешательства: оказывающие прямое влияние – перегревание, переохлаждение и т.д.); оказывающие косвенное влияние – фотопериодизм, биоритмы и т.д.

Выделяют уровни проявлений стресс-реакций:

Для I уровня проявления стресса характерны повреждения, не воспринимаемые невооруженным глазом, а также повреждения, выявляемые только при сравнении с контролем.Реакции I уровня сопровождаются увеличением или снижением ферментной активности, изменением обмена веществ и функционирования биомембран, количества и состояния пигментов, гормонов, изменением энергетического баланса.

Для проявлений II уровня характерны изменения размеров и формы, характер роста, некрозы, преждевременное старение, сокращение продолжительности репродуктивного возраста, изменение плодовитости.II уровню проявления стресса соответствуют поведенческие реакции: пространственное или временное избегание, использование конституционных особенностей тела, что проявляется изменением конфигурации тела и защитным цветом кожи окраской в виде меланизма. Сюда же относятся различные варианты биоритмологических реакций.

Можно выделить антропогенный стресс:

Øс одной стороны, это новые параметры среды обитания, обусловленные деятельностью человека (появление ксенобиотиков);

Øс другой – антропогенная модификация уже имеющихся природных факторов (искусственная радиоактивность).

Острый и хронический стресс, упругие и пластические стрессовые нагрузки

Стресс классифицируется по характеру начальных проявлений, скорости развития и продолжительности.

Острый стресс характеризуется: –внезапным началом,–острым (быстрым) развитием,

–небольшой продолжительностью.

Хронический стресс, при котором неблагоприятный фактор невысокой интенсивности воздействует длительно или часто повторяется, имеет:

–незаметное начало,–постепенное развитие,–длительное течение.

Острый стресс является упругой нагрузкой, вызывающей обратимые изменения, хронический стресс – пластической нагрузкой, приводящей к необратимым изменениям.

Варианты устойчивости к стрессу

Все многообразие устойчивости к стрессовым нагрузкам осуществляется на основе 2-хвариантов повышения устойчивости:

ªизбегания стресса: изменение поведения, биоритмы, особые жизненные циклы;

ªтолерантности к стрессу.

Толерантность бывает врожденной и приобретенной. Благодаря более высокой врожденной толерантности отдельных людей формируются механизмы устойчивости к стрессу, которые закрепляются в виде наследуемых признаков. Приобретенная толерантность является результатом адаптации к стрессовым воздействиям.

Стресс условно принято разделять на непсихогенный и психогенный (психоэмоциональный) (Исаев Л.К., Хитров Н.К., 1997).

Непсихогенный стресс формируется под влиянием разнообразных физических, в том числе механических, химических и биологических факторов или при недостатке необходимых для жизни соединений (О 2 , Н 2 О и т.д.), если степень этого дефицита опасна для жизни.

Психоэмоциональный стресс возникает под влиянием негативных социальных факторов, значимость которых в жизни современного человека постоянно нарастает.

Длительный психоэмоциональный стресс приводит к понижению функциональных возможностей центральной нервной системы и клинически проявляется развитием различных форм неврозов - неврастения, невроз навязчивых состояний, истерия. Сегодня психоэмоциональный стресс рассматривается как важнейший фактор риска возникновения гипертонической и гипотонической болезни, атеросклероза, ишемической болезни сердца, язвенной болезни желудка и двенадцатиперстной кишки, нейрогенных заболеваний кожи, эндокринных заболеваний и многих других (Тополянский В.Д., Струковская М.В., 1986).

Развитие стресса и его исходы во многом зависят от свойств организма, его нервной системы (в том числе вегетативной), эндокринных органов, особенно гипофиза и надпочечников, состояния иммунной системы, кровообращения и т.д. Важное значение в развитие стресса имеет степень тренированности, т.е. долговременной адаптации, формирующейся при многократном воздействии определенного стрессорного агента в оптимальном для этого режиме. Например, жители высокогорья высокорезистентны к кислородному голоданию (гипоксическому стрессу), спортсмены - к физическому стрессу и т.д. Важное значение в формировании устойчивости к стрессорным воздействиям имеют возраст, пол и конституция организма. В частности, новорожденные легко переносят гипоксию, женщины более резистентны к кровопотере, чем мужчины.

При обычном варианте развития при стрессе наблюдаются три стадии:

1) реакциятревоги (alarmreaction); мобилизацией защитных сил организмаактивация гипоталамо-гипофизарно-надпочеч-никовой и симпатоадреналовой систем следствием чего является усиленный выход из передней доли гипофиза адренокортикотропного гормона (АКТГ), стимуляция стероидной функции надпочечников и накопление в кровичеловека в первую очередь глюкокортикоидного гормона кортизона, угнетается секреция минералокортикоидов,наблюдается усиление высвобождения катехоламинов из мозгового слоя надпочечников и нейромедиатора норадреналина из симпатических нервных окончаний.. Наблюдается усиление распада гликогена в печени и в мышцах (стимуляция гликогенолиза), мобилизация липидов и белков (стимуляция глю-конеогенеза), возрастает уровень глюкозы, аминокислот и липидов в крови, активируются β-клетки инсулярного аппарата с последующим повышением содержания инсулина в крови. Происходит понижение деятельности щитовидной и половых желез, лимфопения, увеличивается количество лейкоцитов, эозинофилов, наблюдается уменьшение тимико-лимфатического аппарата, подавление анаболических процессов, главным образом снижение синтеза РНК и белка.Обычно усиливается функция кровообращения, происходит перераспределение крови в пользу мозга, сердца и усиленно работающих скелетных мышц, активизируется внешнее дыхание.

Очень важным является тот факт, что в органах и системах, не участвующих в приспособлении, например при длительном гипокси-ческом или физическом стрессе, усиливается катаболизм, могут развиваться атрофические и язвенные процессы; функция таких органов и систем снижается (пищеварительная, иммунная, репродуктивная), усиление каталитических процессов в тканях может приводить к снижению веса тела.Это перераспределение функциональной и пластической активности на первой стадии стресса способствует экономии энергозатрат организма, но может стать одним из механизмов патогенного действия стресса. Во время стадии тревоги неспецифическая сопротивляемость организма повышается, он делается более устойчивым к различным воздействиям.

2) стадиярезистентности (stageofresistance); в случае успешной экстренной адаптации, несмотря на продолжающееся действие стрессорного агента, нейроэндокринные отклонения исчезают, нормализуется обмен веществ и деятельность физиологических систем. Таким образом, организм вступает во вторую стадию стресса, или адаптации, для которой характерна повышенная устойчивость к экстремальному фактору.

В эндокринных железах нормализуется запас адаптивных гормонов (АКТГ, глюкокортикоидов), а в тканях восстанавливается уровень гликогена и липидов, сниженных в первую стадию стресса; происходит снижение инсулина в крови, что обеспечивает усиление метаболических эффектов кортикостероидов. Наблюдается активация синтетических процессов в тканях с последующим восстановлением нормального веса тела и отдельных его органов. С переходом в стадию резистентности неспецифическая сопротивляемость уменьшается, но возрастает устойчивость организма к тому фактору, которым был вызван стресс.

3) стадияистощения (stageofexhausion). В случае чрезмерно интенсивного или продолжительного действия стрессорного фактора, а также недостаточности регулирующих исполнительных систем формируется третья стадия стресса - истощение. В этой стадии преобладают главным образом явления повреждения, распада.

Гипофизарно-надпочечниковая и симпатоадреналовая системы угнетаются, и уровень соответствующих гормонов в железах внутренней секреции падает, уменьшается количество катехоламинов в мозговом слое надпочечников, в тканях и крови. В данном случае в организме начинают преобладать катаболические процессы, масса органов уменьшается, в них развиваются атрофические и дегенеративные изменения. Специфическая и неспецифическая резистентность организма снижается.

Довольно часто на этой стадии развиваются расстройства центрального кровообращения (аритмии, артериальная гипотония) и микроциркуляции (стаз, микротромбозы и геморрагии) (Исаев Л.К., Хит-ров Н.К., 1997).

В последние годы установлено, что в формировании стресса принимают участие не только стрессорные, но и антистрессорные нейроэндокринные механизмы. Более того, тяжесть стресса и его последствия зависят подчас не только от состояния гипофизарно-надпочечниковой и симпатоадреналовой системы, но и от способности антистрессорных механизмов обеспечивать адекватность реакции физиологических систем приспособления. В случае недостаточности антистрессорных механизмов стресс может стать настолько интенсивным, что в организме развиваются повреждения органов и систем.

Антистрессорные механизмы представлены на разных уровнях регуляции. В центральной нервной системе это ГАМК-ергические и серотонинергические нейроны, которые ослабляют симпатические влияния и уменьшают высвобождение кортиколиберина. В периферических органах уменьшение высвобождения норадреналина и снижение эффективности его действия на адренорецепторы обусловлено нейромедиатором ацетилхолином, некоторыми классами простаглан-динов, аденозинов и другими соединениями.

Значение стресса не является однозначным: в зависимости от конкретных условий он может иметь и позитивное и негативное биологическое значение для организма. Стресс сформирован в эволюции как общебиологическая приспособительная реакция живых существ на опасные и вредные факторы. Кроме того, стресс является первым этапом развития долгосрочной адаптации организма, если стрессор-ный фактор действует продолжительное время в тренирующем режиме (Меерсон Ф.З., 1988). Длительное, особенно периодическое, действие разнообразных гипоксических факторов (дефицит О 2, кро-вопотери, цианиды), гипогликемии, физического напряжения, гипотермии и т.д. вызывает тренирующий эффект. В результате на смену экстренной приходит долговременная адаптация организма. Вместе с тем стресс может стать фактором развития в организме патологических состояний.

Особенности непсихогенного стресса.

Опасные и вредные экологические факторы могут вызывать развитие стресса. Среди физических воздействий наиболее часто стрессорными агентами становятся резкие колебания барометрического давления, выходящие за рамки физиологических возможностей организма, колебания температуры, магнитные аномалии, механическая травма, воздействие пыли, электротравма, ионизирующее излучение и т.д. (Исаев Л.К., Хитров Н.К., 1997). Химические воздействия, нарушающие обмен веществ в тканях и вызывающие гипоксию, например, дефицит О 2 , воздействия СО (оксида углерода), нитросоединений и т.д. являются крайне опасными стрессорными факторами.

При действии непсихогенных экстремальных факторов возникновение различных форм патологии возможно на всех этапах формирования стрессорного состояния.

Во-первых реакция тревоги, напряжения может вообще не развиваться, если интенсивность вредного фактора настолько велика,что она превышает возможности систем приспособления организма. Так, при действии высокого дефицита О 2 , токсических концентраций СО 2 , дефицита глюкозы в крови практически сразу без первых двух фаз стресса возникает фаза истощения в форме соответственно гипоксической и гипогликемической комы. Аналогичная ситуация возникает при тяжелом облучении - лучевая кома, перегревании - тепловой удар и т.д. Подобные же состояния возникают в том случае, если интенсивность стрессорного фактора невелика, но имеется недостаточность систем регуляции, например недостаточность коры надпочечников или снижение активности симпатоадреналовой системы.

Во-вторых возможна ослабленная или чрезмерная реакция напряжения и соответственно слабая или неадекватно сильная активация гипофизарно-надпочечниковой и симпатоадреналовой систем. При недостаточной активности нейроэндокринных механизмов стресса, как и в первом случае, формируется быстрое истощение и развитие экстремальных состояний - обычно коллапса или комы. При избыточной активности указанных выше механизмов вследствие избытка катехоламинов могут развиваться некрозы миокарда, миокардиодистрофия, гипертензионные состояния, ишемические поражения почек, а в результате избытка кортикостероидов - язвенные поражения желудочно-кишечного тракта, иммунный дефицит со склонностью к инфекциям и ряд других расстройств (Василенко В.Х. и др., 1989).

В-третьих при действии крайне интенсивных патогенных факторов среды обитания после реакции тревоги, проявляющейся общим возбуждением, фаза резистентности не развивается, а сразу возникает истощение систем регуляции и угнетение физиологических функций. Такая последовательность характерна для шоковых состояний, при которых ведущее значение в угнетении функции ЦНС вегетативного отдела и эндокринной системы имеет чрезмерная афферентация, например болевая (травматический, ожоговый шок).

В-четвертых возможны ситуации, когда на действие стрессорного фактора кора надпочечников усиленно высвобождает не глюкокорти-коиды (кортизол, кортизон, кортикостерон), а минералокортикоиды (альдостерон, дезоксикортикостерон). Вероятно, это связано с нарушением биосинтеза кортикостероидов в коре надпочечников. В данном случае при повторяющихся стрессорных воздействиях возникает высокая склонность к развитию воспалительных и аллергических заболеваний, гипертензионных состояний, склеротических процессов в почках, вплоть до почечной недостаточности.

Виды адаптации биосистем к стрессу

Изменения при стрессовой нагрузке во времени разворачиваются в виде 5 последовательный стадий:

1 стадия – состояние устойчивого гомеостаза;

2 стадия – исходное состояние после стресса;

3стадия – избыточной реакции;

4стадия – стабилизированного состояния;

5стадия – состояние нового устойчивого гомеостаза.

Характеристика биосистем на 1-йстадии стресса

На первой стадии биосистемы всех уровней организации находятся в состоянии динамического равновесия -это здоровый, жизнеспособный организм.

Характеристика биосистем на 2-йстадии стресса

На второй стадии, именуемой "исходное состояние" непосредственно после действия острого или хронического стрессачаще всего регистрируются резко выраженные изменения в составе, структуре и функции. Иногда структурно-функциональная организация может оставаться без внешних изменений, но гомеостаз организма нарушен всегда

Изменения биосистем на 3-йстадии стресса

На организменном уровне избыточная реакция проявляется в виде активизации неадекватных, компенсаторно-приспособительных реакций (пролиферации, гиперреакций).

Изменения биосистем, соответствующие 4-йи5-йстадиям

Четвертая стадия – этап стабилизированного состояния.

На организменном уровне формируются адекватные адаптационные приспособительные реакции со стороны преимущественно специфических систем(сердечно-сосудистой,дыхательной, выделительной).

Пятая стадия характеризуется формированием нового состояния динамического равновесия (гомеостаза).

В случаях, когда действующий фактор чрезмерно силен или сложен, требуемая приспособительная реакция оказывается неосуществимой. Например, повышенная температура в сочетании с высокой относительной влажностью в более значительной степени нарушают терморегуляцию. В результате первоначальные нарушения гомеостаза остаются, а стимулируемый ими стресссиндром достигает чрезмерной интенсивности и длительности, превращаясь в инструмент повреждения и причину возникновения многочисленных стрессорных заболеваний.

Биологические ритмы

В любом явлении окружающей нас природы существует строгая повторяемость процессов: она является универсальным свойством и живой материи. Вся наша жизнь представляет собойпостоянную смену покоя и активной деятельности, сна и бодрствования,утомления от напряженного труда и отдыха.

Биологические ритмы (биоритмы) - регулярное, периодическое повторение во времени характера и интенсивности жизненных процессов, отдельных состояний или событий.

Биологические ритмы - фундаментальное свойство органического мира, обеспечивающее его способность к адаптации и выживанию в циклически меняющихся условиях внешней среды. Это осуществляется за счет ритмичного чередования процессов анаболизма и катаболизма (Оранский И.Е., 1988).

Изучением биоритмов живых систем, их связи с ритмами, существующими в природе, занимается относительно недавно возникшая наука - хронобиология (биоритмология), составной частью которой является хрономедицина.

Главными параметрами ритма являются период, МЕЗОР, амплитуда, акрофаза.

Рис. 2.1.1. Схематическое изображение ритма и его показатели:

Т - время. Обратная величина периода, в единицах циклов на единицу времени - частота ритма.М (МЕЗОР) - средний уровень показателя в течение одного биологического цикла.А (амплитуда) - расстояние от МЕЗОРа до максимума показателя. Акрофаза - момент времени, соответствующий регистрации максимального значения сигнала а время наибольшего спада процесса – как батифаза. .Количество циклов, совершающихся в единицу времени, называют частотой.. Помимо этих показателей, каждый биологический ритм характеризуется формой кривой , которую анализируют при графическом изображении динамики ритмически меняющихся явлений (хронограмма, фазовая карта и др.). Простейшая кривая, описывающая биоритмы, – это синусоида. Однако, как показывают результаты математического анализа, структура биоритма бывает, как правило, более сложной.

По степени зависимости от внешних условий биоритмы разделяют на экзогенные и эндогенные.

Экзогенные (внешние) ритмы зависят от ритмики географических и космических факторов (фотопериодизма, температуры окружающей среды, атмосферного давления, ритма космического излучения, гравитации и т. д.).

Эндогенные активные ритмы устанавливаются под влиянием постоянно действующих внешних условий, биологический эффект которых не выходит за границыадаптационно-компенсаторныхрезервов организма человека. автономные (син. спонтанные, самоподдерживающиеся, самовозбуждающиеся) колебания, обусловленные активными процессами в самой живой системе (к ним относится большинство Б. р.: многие микроритмы и все экологические ритмы).

В биоритме всегда присутствуют две компоненты - экзогенная и эндогенная. Эндогенный ритм непосредственно определяется генетической программой организма, которая реализуется через нервный и гуморальный механизмы.

Биоритмы имеют внутреннюю и внешнюю регуляцию. Внутренняя регуляция биоритмов определяется функционированием так называемых биологических часов.

Согласно современным представлениям, в организме действуют биологические часы трех уровней (Билибин Д.П., Фролов В.А., 2007).

Первый уровень связан с деятельностью эпифиза: ритмы находятся в строгой иерархической подчиненности основному водителю ритмов, расположенному в супрахиазматизматических ядрах гипоталамуса (СХЯ). Гормоном, доносящим информацию о ритмах, генерируемых СХЯ, до органов и тканей, является мелатонин (по химической структуре - индол), преимущественно продуцируемый эпифизом из триптофана. Мелатонин также продуцируется сетчаткой, цилиарным телом глаза, органами ЖКТ. Активация регуляторной деятельности эпифиза относительно биоритмов "запускается" сменой дня и ночи (входным "рецептором" являются в том числе и глаза, хотя и не только они).

Ритм продукции мелатонина эпифизом носит циркадианный характер и определяется СХЯ, импульсы из которого регулируют активность норадренергических нейронов верхних шейных ганглиев, чьи отростки достигают пинеалоцитов. Мелатонин является мессендже-ром не только основного эндогенного ритма, генерируемого СХЯ и синхронизирующего все остальные биологические ритмы организма, но также и корректором этого эндогенного ритма относительно ритмов окружающей среды. Следовательно, любые изменения его продукции, выходящие за рамки нормальных физиологических колебаний, способны привести к рассогласованию как собственно биологических ритмов организма между собой (внутренний десинхроноз), так и ритмов организма с ритмами окружающей среды (внешний десинхроноз).

Второй уровень биологических часов связан с супраоптической частью гипоталамуса, который с помощью так называемого субкомиссурального тела имеет связи с эпифизом. Через эту связь (а может быть, и гуморальным путем) гипоталамус получает "команды" от эпифиза и регулирует биоритмы далее. В эксперименте было показано, что разрушение супраоптической части гипоталамуса ведет к нарушению биоритмов.

Третий уровень биологических часов лежит на уровне клеточных и субклеточных мембран. По-видимому, какие-то участки мембран обладают хронорегуляторным действием. Об этом косвенно свидетельствуют факты о влиянии электрических и магнитных полей на мембраны, а через них и на биоритмы.

Таким образом, координирующую роль в синхронизации ритмов всех клеток многоклеточного организма играет гипоталамо-гипофизарная система (Билибин Д.П., Фролов В.А., 2007).

Внешняя регуляция биоритмов связана с вращением Земли вокруг своей оси, движением ее по околосолнечной орбите, с солнечной активностью, изменениями магнитного поля Земли и рядом других геофизических и космических факторов, причем среди экзогенных факторов, выполняющих функцию "датчиков времени", наиболее значимы свет, температура и периодически повторяющиеся социальные факторы (режим труда, отдыха, питания). Атмосферное давление и геомагнитное поле как датчики времени играют меньшую роль. Таким образом, у человека выделяется две группы внешних синхронизаторов - геофизические и социальные (Билибин Д.П.,Фролов В.А., 2007).

Адаптация - это совокупность процессов в организме, форми­рующих его устойчивость к изменившимся условиям существования. В зависимости от уровня приспособительных реакций можно выделить фи­зиологическую (системную) и биохимическую (клеточную) адаптацию.

Физиологическая адаптация связана с перестройкой деятельно­сти системных функций организма (например, кровообращения, дыхания, нервной системы и т.д.), позволяющих сохранить постоянство внутренней среды организма и облегчить деятельность органов и тканей, улучшая их снабжение питательными веществами и кислородом, ускоряя вывод про­дуктов жизнедеятельности.

Клетки, являясь частью организма, обладают собственными ме­ханизмами перестройки обмена веществ, основанными на изменениях в протекании биохимических реакций внутри клеток.

Два вида адаптации тесно взаимосвязаны и дают возможность приспособиться организму к неблагоприятным условиям.

Адаптация связана с регуляцией, так как направить в нужное русло обмен веществ можно только с помощью системы внеклеточных регуляторов. Биохимическая адаптация и регуляция может быть срочной и долговременной.

Срочная адаптация связана с быстрой перестройкой обмена ве­ществ, происходящей в начале критической ситуации. При этом все из­менения обмена веществ обусловлены включением срочных механизмов регуляции клеточного метаболизма, а именно действием нервно-гормональных стимулов на проницаемость клеточных мембран и актив­ность ферментов.

Если срочная адаптация направлена на выживание клетки, то долговременная - на сохранение жизнеспособности ее в неблагоприятных условиях. При долговременной адаптации перестройка метаболизма обу­словлена включением долговременных механизмов регуляции, т.е. влия­нием нервно-гормонольных стимулов на синтез ферментов и других функциональных белков, обеспечивающих иной тип обмена веществ, соответствующий изменившимся условиям.

Если по каким-либо причинам нервно-гормональная регуляция нарушена, то организм долго не может приспособиться к сложившимся условиям среды, что проявляется в виде болезней адаптации и акклима­тизации.

1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.: Меди­цина, 1999.

2. Гофман Э. Динамическая биохимия. - М.: Медицина, 1971.

3. Гудман М., Морхауз Ф. Органические молекулы в действии. М.: Мир, 1977

4. ЛенинджерА. Биохимия. - М.: Мир, 1986.

5. Марри Р., Греннер Д., Мейс П., Родуэл В. Биохимия человека. М.: Мир, 1993.

6. Николаев А.Я. Биологическая химия. - М.: Высшая школа 1989.

7. Николаев Л.А. Химия жизни. - М.: Просвещение, 1973.

8. Страйер Л. Биохимия. В 3-х тт. - М.: Мир, 1984.

9. Строев Е.А. Биологическая химия. - М.: Высшая школа, 1986.

10. Уайт А., Хендлер Ф., Смит Э. И др. Основы биохимии. - М. Мир, 1981.

11. Филиппович Ю.Б. Основы биохимии. - М.: Агар, 1999.

Предисловие

Введение

Предмет и задачи биохимии

Методы исследования

Основные признаки живой материи

Глава 1. ХИМИЧЕСКИЙ СОСТАВ ОРГАНИЗМОВ

Глава 2. СТРОЕНИЕ И СВОЙСТВА БЕЛКОВ

2.1. Роль белков в построении живой материи. Определе­ние белков

2.2. Элементный состав белков. Содержание белков в ор­ганах и тканях

2.3. Аминокислотный состав белков

2.4. Кислотно-основные свойства аминокислот

2.5. Стереохимия аминокислот

2.6. Строение белков

2.7. Уровни структурной организации белков

Первичная структура белков

Вторичная структура белков

Третичная структура белков

Четвертичная структура белков

2.8. Денатурация и ренатурация

2.9. Определение молекулярной массы белков

2.10. Физико-химические свойства белков

Кислотно-основные и буферные свойства белков

Гидратация белков и факторы, влияющие на их растворимость

2.11. Функции белков в организме

2.12. Методы выделения и очистки белков

Методы выделения

Очистка белков, оценка гомогенности белка

2.13. Классификация белков

Глава 3. УГЛЕВОДЫ

3.1. Понятие об углеводах и их классификация

3.2. Моносахариды

Оптичекие свойства моносахаридов

Структура моносахаридов

3. 3 Основные реакции моносахаридов

Реакции с участием карбонильной группы

Реакции с участием гидроксильных групп

3.4. Сложные углеводы

Олигосахариды

Полисахариды

3.5. Биологичекие функции углеводов

Глава 4. НУКЛЕИНОВЫЕ КИСЛОТЫ

4.1. Общая характеристика нуклеиновых кислот

4.2. Химический состав и строение нуклеиновых кислот

4.3. Уровни структурной организации нуклеиновых кислот

Первичная структура нуклеиновых кислот

Вторичная структура ДНК

Вторичная структура РНК

Третичная структура РНК и ДНК

Глава 5. ЛИПИДЫ

5 1. Общая характеристика и классификация липидов

5.2. Липидные мономеры

5.3. Многокомпонентные липиды

5. 4. Биологические функции липидов

Глава 6. ФЕРМЕНТЫ

6.1. Методы выделения и очистки ферментов

6.2. Химическая природа и структура ферментов

6.З. Кофакторы ферментов

Ионы металлов как кофакторы ферментов

Коферменты

6.4. Механизм действия ферментов

6.5. Свойства ферментов

6. 6. Специфичность действия ферментов

7.7. Факторы, влияющие на скорость ферментативного катализа

Влияние температуры на активность ферментов

Влияние рН на активность ферментов

Влияние концентраций субстрата и фермента на скорость ферментативной реакции

Зависимость скорости реакции от времени

6.8. Регуляция активности ферментов

Активация ферментов

Ингибирование ферментов

Аллостерическая регуляция действия ферментов

6.9. Определение активности ферментов

6.10. Номенклатура и классификация ферментов

6.11. Локализация ферментов в организме и клетке

6.12. Применение ферментов

Глава 7. ВИТАМИНЫ

7.1. Понятие о витаминах

7.2. Классификация витаминов

7.3. Жирорастворимые витамины

Витамин А (ретинол)

Витамин D (кальциферол)

Витамин Е (токоферолы)

Витамин К (нафтохиноны)

7.4. Водорастворимые витамины

Витамин B 1 (тиамин)

Витамин В 2 (рибофлавин)

Витамин В 3 (пантотеновая кислота)

Витамин В 5 (РР, ниацин, никотинамид, никотино­вая кислота)

Витамин В 6 (пиридоксин)

Витамин В 9 (В с, фолиевая кислота)

Витамин В 12 (кобаламин)

Витамин С (аскорбиновая кислота)

Витамин Н (биотин)

Витамин Р (рутин, витамин проницаемости)

7.5. Витаминоподобные вещества

Глава 8. ОБЩИЕ ЗАКОНОМЕРНОСТИ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ В ОРГАНИЗМЕ

8.1. Обмен веществ

8.2. Обмен энергии

Глава 9. БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ

9.1. Сущность биологического окисления

9.2. Дыхательная цепь

9.3. Окислительное фосфорилирование

Глава 10. ОБМЕН УГЛЕВОДОВ

10.1. Переваривание углеводов

10.2. Метаболизм глюкозы

10.3. Биосинтез гликогена

10.4. Распад гликогена

10.5. Анаэробный гликолиз

10.6. Аэробный распад глюкозы

10.7. Пентозофосфатный цикл

10.8. Биосинтез глюкозы (глюконеогенез)

10.10. Регуляция обмена углеводов

Глава 11. ОБМЕН ЛИПИДОВ

11.1. Переваривание липидов

11.2. Метаболизм глицерина

11.3. Метаболизм жирных кислот

11.4. Биосинтез жиров

11.5. Регуляция обмена липидов

Глава 12. ОБМЕН НУКЛЕИНОВЫХ КИСЛОТ

12.1. Пути распада РНК и ДНК

12.2. Распад пуриновых и пиримидиновых оснований

12.3. Биосинтез нуклеотидов

12.4. Биосинтез нуклеиновых кислот

12.5. Путь информации от генотипа к фенотипу

Глава 13. ОБМЕН БЕЛКОВ

13.1. Понятие об обмене белков

13.2. Переваривание белков пищи и распад белков тканей

13.3. Метаболизм аминокислот

13.4. Удаление аммиака из организма. Орнитиновый цикл

13.5. Синтез аминокислот

13.6. Биосинтез белков (трансляция)

Глава 14. ВОДНО-СОЛЕВОЙ И МИНЕРАЛЬНЫЙ ОБМЕН

14.1. Водно-солевой обмен

Роль и функции воды в процессе жизнедеятельно­сти

14.2. Регуляция водно-солевого обмена

Регуляция осмотического давления и объема вне­клеточной жидкости

Регуляция рН

14.3. Минеральный обмен

Минеральные вещества

Функции минеральных веществ

Минеральные вещества и обмен нуклеиновых ки­слот

Минеральные вещества и обмен белков

Минеральные вещества и обмен углеводов и липи­дов

14.4. Регуляция минерального обмена

Глава 15. ВЗАИМОСВЯЗЬ ОБМЕНА БЕЛКОВ, ЖИРОВ, УГЛЕВОДОВ И НУКЛЕИНОВЫХ КИСЛОТ

Глава 16. ГОРМОНЫ. НЕРВНО-ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ОБ­МЕНА ВЕЩЕСТВ

16.1. Понятие о гормонах. Основные принципы регуляции обмена веществ

16. 2. Классификация гормонов

16.3. Общие представления о действии гормонов

16. 4. Гормоны щитовидной и паращитовидных желез

Гормоны щитовидной железы

Гормоны паращитовидных желез

16.5. Гормоны поджелудочной железы

16.6. Гормоны надпочечников

16.7. Гормоны половых желез

16.8. Гормоны гипоталамо-гипофизарной системы

16.9. Гормоны тимуса и эпифиза

16.10. Простагландины

16.11. Биохимическая адаптация

2.1 Биохимические адаптации

Проблема устойчивости организма, его адаптации к изменяющимся факторам среды остается оной из центральных проблем биологии. Этой темой в сое время занимались такие ученые как А.Н. Северцов, И.И. Шмальгаузен, К.М. Завадский, С.С. Шварц, Е.М. Крепс и др.

Проблема адаптации охватывает широкий круг вопросов приспособления организма к условиям среды обитания. Эта проблема стоит в центре многих общебиологических дисциплин, поскольку она затрагивает ряд фундаментальных свойств живых организмов. Но несмотря на большое разнообразие типов, уровней и механизмов адаптаций, их можно рассматривать как переходный процесс, вызванный сменой среды или отдельных ее факторов: переход живой системы любого уровня организации из одного устойчивого состояния в другое.

Каждый организм живет в многокомпонентной среде обитания, которая постоянно изменяется и организм вынужден постоянно к ней приспосабливаться. Здесь важно знать, что одни виды обладают узкой, другие - широкой приспособляемостью.

Важнейшей особенностью адаптаций является их относительный характер, в соответствии с которым организм или популяция лучше или хуже приспособлены к конкретному типу природной среды в настоящий момент. Существенными признаками приспособительных процессов являются: системный характер, фазность и цена адаптации, включающая размер затрат ресурсов организма или популяции на приспособление к новым условиям.

Адаптации к условиям окружающей среды, как универсальное биологическое явление формируются и проявляются на самых различных уровнях биологической организации, - от молекулярного до биоценотического. На поведенческом уровне организмы действуют обычно таким путем, который по всей видимости, увеличивает их шансы на выживание в данной среде и использование этой среды. На анатомическом уровне структуры организма часто обнаруживают очевидное соответствие его образу жизни. На физическом уровне способы осуществления жизненных функций нередко отражают те внешние условия, с которыми сталкивается данный вид.

Биохимические изменения адаптивны большей частью на уровне основных метаболических функций и поэтому микроскопически не проявляются. Успешная адаптация ферментных систем, мембран, дыхательных пигментов и т. п. к тем или иным условиям среды еще не говорит об идентичности этих систем у различных организмов, даже если внешние адаптивные признаки у них сходны. Для того чтобы выявить эти особенности в адаптации биохимических систем, Немова Н.Н. и Высоцкая Р.У. рассмотрели вначале те биохимические структуры и функции, которые абсолютно необходимы для всех живых систем и проявляют чувствительность к изменениям факторов среды. Это относится, прежде всего, к биохимическим адаптациям, направленным на:

Сохранение целостности и функциональной активности макромолекул (нуклеиновых кислот, ферментов, структурных и контрактильных белков) и надмолекулярных комплексов (хроматина, хромосом, рибосом, мембран);

Обеспечение организма источниками энергии и питательными веществами, используемыми для биосинтеза белков, нуклеиновых кислот, углеводов и липидов, составляющих ткани организма и являющихся запасами питательного материала;

Поддержание регуляторных механизмов обмена веществ и его изменений в зависимости от непостоянных условий среды обитания.

Перечисленные функции необходимы всем живым системам, в каких бы условиях они не находились. Поскольку метаболическая активность организмов находится в строгой зависимости от таких макромолекул, как ферменты и нуклеиновые кислоты, процессы адаптации должны сводиться к тому, чтобы функции макромолекул были такого типа и осуществлялись с такими скоростями, при которых жизненные процессы организма протекали бы удовлетворительно, несмотря на помехи со стороны окружающей среды. В процессе адаптации организм достигает векторного гомеостаза метаболических функций. Выражение векторный гомеостаз подчеркивает то, что в процессе адаптации к внешней среде, как скорости, так и направления метаболических реакций «настраиваются» таким образом, чтобы организм непрерывно получал необходимые ему продукты.

В работе Н.Н. Наумовой и Р.У. Высоцкой отмечено, что в действительности биохимическая адаптация часто является, крайним средством, к которому организм прибегает тогда, когда у него нет поведенческих или физиологических способов избежать неблагоприятного воздействия среды. Как правило, биохимическая адаптация - это не самый легкий путь, часто оказывается проще найти подходящую среду путем миграции, чем перестроить химизм клетки. Регуляция метаболизма осуществляется с помощью целой иерархии механизмов, заложенных в генах и реализующихся синтезом соответствующих белков.

Так же при рассмотрении биохимических адаптаций на уровне микросреды велика роль липидного окружения, в котором функционируют многие ферменты, в особенности, связанные с мембранами. Липиды, не будучи микромолекулами тоже могут подобно водной среде, создавать микроокружение, благоприятное для функционирования белков. Во время обсуждения процессов адаптации, протекающих с участием мембранных липидов и осмолитов, следует учитывать процессы, обеспечивающие нужную величину рН в непосредственном окружении ферментов. Выбор этой величины и буферных систем для ее поддержания был, вероятно важнейшей проблемой, которую пришлось решить живым организмам на заре клеточной эволюции. По мнению Н.Н. Наумовой и Р.У. Высоцкой это вытекает из того факта, что регуляция рН обнаруживается у всех исследованных к настоящему времени организмов.

Биологическая и социальная адаптация человека

Адаптации человека к факторам окружающей среды носят опосредованный характер. Действие экологических факторов всегда опосредовано результатами производственной деятельности людей...

Роль лизосомальных ферментов в эколого-биохимических адаптациях рыб к изменяющимся факторам среды; Биохимический интегральный индекс - БИИ...

Биохимическая индикация состояния рыб

Влияние экологических факторов на жизнедеятельность организмов

Животные и растения вынуждены приспосабливаться к множеству факторов непрерывно изменяющихся условий жизни. Динамичность экологических факторов во времени и пространстве зависит от астрономических, гелиоклиматических...

Приспособления организмов к окружающей среде носят название адаптации. Под адаптациями понимаются любые изменения в структуре и функциях организмов, повышающие их шансы на выживание...

Лимитирующие факторы. Адаптация организмов к факторам

Основные механизмы адаптации на уровне организма: 1) биохимические - проявляются во внутриклеточных процессах, как, например, смена работы ферментов или изменение их количества; 2) физиологические - например...

Организм и условия его обитания

Физиологические адаптации растений к световым условиям наземно-воздушной среды охватывают различные жизненные функции. Установлено - у светолюбивых растений ростовые процессы более чутко реагируют на недостаток света по сравнению с теневыми...

Основные вопросы экологии

Приспособления организмов к среде носят название адаптации. Под адаптациями понимаются любые изменения в структуре и функциях организмов, повышающие их шансы на выживание. Способность к адаптациям - одно из основных свойств жизни вообще...

Экология и здоровье человека

В истории нашей планеты (со дня ее формирования и до настоящего времени) непрерывно происходили и происходят грандиозные процессы планетарного масштаба, преобразующие лик Земли...

Экология человека

Биологическая адаптация человека - эволюционно возникшее приспособление организма человека к условиям среды, выражающееся в изменении внешних и внутренних особенностей органа, функции или всего организма к изменяющимся условиям среды...

Экология человека

Адаптации создаются по отношению к факторам как природной, так и искусственной среды, поэтому они носят не только экологический, но и социально-экономический характер...

Читайте также: