Единицы измерения радиации. Единицы измерения проникающей радиации. Единицы измерения радиоактивного излучения Что такое кюри в радиации

С середины прошлого века в науку пришло новое слово - радиация. Ее открытие совершило переворот в умах физиков всего мира и позволило отбросить некоторые ньютоновские теории и сделать смелые предположения относительно строения Вселенной, ее образования и нашего места в ней. Но это все - для специалистов. Обыватели же только вздыхают и пытаются сложить воедино такие разрозненные знания об этом предмете. Усложняет процесс тот факт, что единиц измерения радиации существует довольно много, и все они правомочны.

Терминология

Первый термин, с которым стоит познакомиться, - это, собственно, радиация. Так называют процесс излучения каким-либо веществом мельчайших частиц, таких как электроны, протоны, нейтроны, атомы гелия и другие. В зависимости от вида частицы свойства излучения отличаются друг от друга. Излучение наблюдают либо при распаде веществ на более простые, либо при их синтезе.

Единицы измерения радиации - это условные понятия, которые указывают, сколько элементарных частиц высвобождается из вещества. На данный момент физика оперирует семью разными единицами и их комбинациями. Это позволяет описывать различные процессы, происходящие с материей.

Радиоактивный распад - произвольное изменение строения нестабильных ядер атомов при помощи высвобождения микрочастиц.

Постоянная распада - это статистическое понятие, предсказывающее вероятность разрушения атома на определенный отрезок времени.

Период полураспада - это временной промежуток, за который распадается половина всего количества вещества. У некоторых элементов он исчисляется минутами, а у других - годами, и даже десятилетиями.

В чем измеряется радиация

Единицы измерения радиации - не единственные, которые используются для оценки свойств Кроме них применяют такие величины, как:
- активность источника радиации;
- плотность потока (количество ионизирующих частиц на единицу площади).

Кроме этого, существует разница в описании воздействия радиации на живые и неживые объекты. Так, если вещество неживое, то к нему применимы понятия:

Поглощенная доза;
- экспозиционная доза.

Если же излучение подействовало на живую ткань, то используют следующие термины:

Эквивалентная доза;
- эффективная эквивалентная доза;
- мощность дозы.

Единицами измерения радиации являются, как уже говорилось выше, условные числовые значения, принятые учеными для облегчения расчетов и построения гипотез и теорий. Возможно, именно поэтому не существует единой общепринятой единицы измерения.

Кюри

Одной из единиц измерения радиации является кюри. Она не относится к системным (не принадлежит к системе СИ). В России ее используют в ядерной физике и медицине. Активность вещества будет равняться одному кюри, если за одну секунду в нем будет происходить 3,7 миллиардов радиоактивных распадов. То есть можно сказать, что один кюри равен трем миллиардам семистам миллионам беккерелей.

Такое число получилось благодаря тому, что Мария Кюри (которая и ввела в науку данный термин) проводила свои опыты на радии и взяла за основу его скорость распада. Но со временем физики решили, что числовое значение этой единицы лучше привязать к другой - беккерелю. Это позволило избежать некоторых погрешностей в математических расчетах.

Помимо кюри, часто можно встретить кратные или дольные единицы, такие как:
- мегакюри (равен 3,7 на 10 в 16 степени беккерелей);
- килокюри (3,7 тысячи миллиардов беккерелей);
- милликюри (37 миллионов беккерелей);
- микрокюри (37 тысяч беккерелей).

При помощи этой единицы можно выразить объемную, поверхностную или удельную активность вещества.

Беккерель

Единица измерения дозы радиации беккерель является системной и входит в Международную систему единиц (СИ). Она является самой простой, потому что активность радиации в один беккерель означает, что в веществе происходит всего один радиоактивный распад за секунду.

Она получила свое название в честь Антуана французского физика. Название было одобрено в конце прошлого века и используется до сих пор. Так как это достаточно маленькая единица, то для обозначения активности используют десятичные приставки: кило-, милли-, микро- и другие.

В последнее время вместе с беккерелями стали использоваться такие внесистемные единицы, как кюри и резерфорд. Один резерфорд равняется миллиону беккерелей. В описании объемной или поверхностной активности можно встретить обозначения беккерель на килограмм, беккерель на метр (квадратный или кубический) и различные их производные.

Рентген

Единица измерения радиации рентген тоже не является системной, хоть и используется повсеместно для обозначения экспозиционной дозы полученного гамма-излучения. Один рентген равен такой дозе излучения, при которой один кубический сантиметр воздуха при стандартном атмосферном давлении и нулевой температуре несет в себе заряд, равный 3,3*(10*-10). Это равно двум миллионам пар ионов.

Несмотря на то, что по законодательству РФ большинство внесистемных единиц использовать запрещено, рентген используется в маркировке дозиметров. Но и они скоро перестанут использоваться, так как более практичным оказалось записывать и вычислять все в греях и зивертах.

Рад

Единица измерения радиации рад находится вне системы СИ и равняется такому количеству излучения, при котором одному грамму вещества передается одна миллионная джоуля энергии. То есть один рад - это 0,01 джоуль на килограмм материи.

Материалом, который поглощает энергию, может быть как живая ткань, так и другие органические и неорганические вещества и субстанции: почва, вода, воздух. Как самостоятельная единица рад был введен в 1953 году и в России имеет право использоваться в физике и медицине.

Грей

Это еще одна единица измерения уровня радиации, которая признана Международной системой единиц. Она отражает поглощенную дозу радиации. Считается, что вещество получило дозу в один грей, если энергия, которая передалась с излучением, равна одному джоулю на килограмм.

Эта единица получила свое название в честь английского ученого Льюиса Грея и была официально введена в науку в 1975 году. По правилам, полное название единицы пишется с маленькой буквы, но ее сокращенное обозначение - с большой. Один грей равен ста радам. Помимо простых единиц, в науке используют еще кратные и дольные их эквиваленты, такие как килогрей, мегагрей, децигрей, сантигрей, микрогрей и другие.

Зиверт

Единица измерения радиации зиверт используется для обозначения эффективной и эквивалентной доз излучения и также входит в систему СИ, как грей и беккерель. Используется в науке с 1978 года. Один зиверт равен энергии, которую поглотил килограмм ткани после воздействия одного грея гамма-лучей. Название свое единица получила в честь Рольфа Зиверта, ученого из Швеции.

Судя по определению, зиверты и греи равны, то есть эквивалентная и поглощенная дозы имеют одинаковые размеры. Но разница между ними все-таки есть. При определении эквивалентной дозы необходимо учитывать не только количество, но и другие свойства излучения, такие как длина волны, амплитуда и какие частицы ее представляют. Поэтому числовое значение поглощенной дозы умножают на коэффициент качества излучения.

Так, например, при всех прочих равных условиях поглощенный эффект альфа-частиц будет в двадцать раз сильнее, чем такая же доза гамма-излучения. Помимо этого, необходимо учитывать тканевой коэффициент, который показывает, как органы реагируют на излучение. Поэтому эквивалентная доза используется в радиобиологии, а эффективная - в гигиене труда (для нормирования воздействия излучения).

Солнечная постоянная

Существует теория, что жизнь на нашей планете появилась благодаря солнечной радиации. Единицы измерения излучения от звезды - калории и ватты, деленные на единицу времени. Так было решено потому, что величина радиации от Солнца определяется по количеству тепла, которое получают объекты, и интенсивности, с которой оно поступает. До Земли доходит всего половина миллионной доли от общего количества выбрасываемой энергии.

Радиация от звезд распространяется в космосе со скоростью света и в нашу атмосферу попадет в виде лучей. Спектр этого излучения довольно широкий - от «белого шума», то есть радиоволн, до рентгеновских лучей. Частицы, которые тоже попадают вместе с излучением, - это протоны, но иногда могут быть и электроны (если выброс энергии был большим).

Излучение, получаемое от Солнца, является движущей силой всех живых процессов на планете. Количество получаемой нами энергии зависит от времени года, положения звезды над горизонтом и прозрачности атмосферы.

Воздействие радиации на живых существ

Если одинаковые по своим характеристикам живые ткани облучать разными видами радиации (в одинаковой дозе и интенсивности), то результаты будут разниться. Поэтому для определения последствий мало только поглощенной или экспозиционной дозы, как в случае с неживыми объектами. На сцене появляются единицы измерения проникающей радиации, такие как зиверты бэры и греи, которые указывают на эквивалентную дозу радиации.

Эквивалентной называется доза, поглощенная живой тканью и умноженная на условный (табличный) коэффициент, который учитывает, насколько опасен тот или иной вид радиации. Чаще всего для ее измерения используется зиверт. Один зиверт равняется ста бэрам. Чем больше коэффициент тем, соответственно, опаснее излучение. Так, для фотонов это - единица, а для нейтронов и альфа-частиц - двадцать.

Со времени аварии на Чернобыльской АЭС в России и других странах СНГ стали особое внимание уделять уровню радиационного воздействия на человека. Эквивалентная доза от естественных источников излучения не должна быть выше пяти миллизивертов в год.

Действие радионуклидов на не живые объекты

Радиоактивные частицы несут в себе заряд энергии, который они передают веществу, когда сталкиваются с ним. И чем больше частиц соприкоснется на своем пути с определенным количеством вещества, тем больше оно получит энергии. Количество ее оценивается в дозах.

  1. Поглощенная доза - это то которое было получено единицей вещества. Измеряется в греях. Эта величина не учитывает тот факт, что воздействие разных видов излучения на материю отличается.
  2. Экспозиционная доза - представляет собой поглощенную дозу, но с учетом степени ионизации вещества от воздействия разных радиоактивных частиц. Измеряется в кулонах на килограмм или рентгенах.

Радиоактивность: беккерель, соотношение с кюри, микрозиверт – опасно/безопасно

Единица измерения радиоактивности (радиации) Беккерель (обозначение Бк, Bq, becquerel) – это количество ядерных распадов в образце в секунду. Не в килограмме, метре и литре, а в произвольном образце.

Радиоактивность воды, продуктов, почвы измеряется в беккерелях в 1 литре, килограмме, кубическом метре.

Для продовольствия радиоактивность должна измеряться в Бк/кг.

Сколько беккерелей в одном кюри, или чему равен один кюри?

Старая единица измерения – Кюри (Ки, Curie, Ci).
1 Ci = 37 GBq (гигаБеккерель)

Физически один Кюри – это такая радиоактивность, какую даёт один грамм изотопа радия-226. Радионуклид 226Ra – это самый стабильный изотоп радия, имеет период полураспада около 1600 лет.

Радий-226 возникает при распаде урана-238, урана-235, тория-232. Разумеется, весь этот радиоактивный набор имеется в количестве около сотни тонн в каждом ядерном реакторе АЭС.

Из радиоактивного радия-226 образуется через альфа-распад радиоактивный радон-222, с периодом полураспада 3,8235 суток.

Радон-222 альфа-распадом (выстреливая ядром гелия-4) образует нуклид полоний-218 с периодом полураспада 3,10 минуты, и так далее.

Сколько беккерелей опасно для здоровья?

Для тепловой мощности ядерного реактора в 1 мегаватт нужная радиоактивность примерно в 3×10**16 беккерелей (3 на 10 в 16 степени).

Так как при одном ядерном распаде далеко не всегда возникает только одна частица или квант, то по моему инженерно-метрологическому мнению, практические “измерения” радиоактивности в беккерелях в пересчёте на радионуклиды цезия или йода не имеют большого смысла – получается просто некая индикативная величина.

Химико-радиологическое исследования образцов, в результате которого получаются концентрации изотопного состава молока – это точное измерение, а беккерели, да еще пересчитанные на цезий… Всё равно, что платить за молоко в кассе супермаркета по цене в долларах за дойную корову.

Вторая сторона вопроса: “а что такое опасно для здоровья”. Учитывая, что по официальным данным ООН/ВОЗ в преддверии четвертьвекового юбилея в результате Чернобыльской ядерной катастрофы официально ядерно пострадало (т.е. умерло от лучевой болезни) 57 человек, то напрашивается вывод, что “безопасно для здоровья” означает, что сразу не умрешь от полученной дозы радиации, умрешь потом. И чиновник-статистик не напишет, что умер от радиации.

Поэтому ядерные пропагандисты придумали “радиоактивный банановый эквивалент” – количество радиации, вводимой в организм при съедании одного банана. Дело в том, что радионуклиды содержатся везде, с том числе и в нормальной природной пище (если кто сможет найти таковую). Например, в пище содержится “природный” радиозотоп калий-40. В грамме природного калия (в естественной смеси изотопов калия) наблюдается 32 распада калия-40 в секунду, что есть 32 беккереля, или 865 пикокюри.

Естественная радиоактивность бананов – 130 Бк/кг, съев 1 килограмм бананов человек получает дозу облучения 0,66 микрозивертов. Это, конечно, очень условно. Считается, что бананы – один из самых естественно-радиоактивных продуктов питания. Однако их люди кушают десятки тысяч лет, табу на их поедание человечество не выработало.

Все натуральные продукты содержат некоторое количество радионуклидов. С пищей человек получает внутрь дозу радиации 0,35 миллизиверт за 1 год.

Что означают единицы измерения радиации - Зиверт, бэр, рентген

Что означают единицы измерения Зиверт (Sievert, Зв, Sv), бэр, rem, рентген (roentgen)? Радиоактивность – это превращения одних атомов в другие, с вылетом излучений.

С 1979 года “биологическая” радиация измеряется в Зивертах.
Про про пересчёт Рентген в Зиверт, сколько Рентген в час в Микрозиверт в час – в статье Опасный уровень радиации и безопасная радиоактивность: соотношение зиверты/рентгены

Фактически, Зиверты – это Греи (поглощенная физическая радиация), пересчитанные с “коэффициентами качества” (усредненный коэффициент относительной биологической эффективности, ОБЭ), в зависимости от состава ионизирующего излучения, то есть радиации.

Один Грей (Gray, Гр, Gy) – это единица измерения поглощённой дозы ионизирующего излучения.
Поглощённая доза радиации одним килограммом массы равна одному грею, когда этот один килограмм вещества получило один джоуль энергии.
Гр = Дж / кг.

Пересчёт физических Греев в биологические Зиверты делается с коэффициентами ОБЭ:
γ-излучение (рентгеновские лучи), β-излучение (поток электронов), мюоны: 1
α-радиация (ядра гелия): 10-20
Нейтроны (тепловые, медленные, резонансные), энергией до 10 кэВ: 3-5
Нейтроны энергией (скоростью) больше 10 кэВ: 10-20
Протоны (ядра водорода-1): 5-10
Тяжёлые ядра: 20
(1)

Понятно, что усредненный коэффициент относительной биологической эффективности не отражает “медицинского влияния” на организм. Одно дело облучать голову с мозгом, а другое дело палец левой ноги.

Вспомните пузырьковую камеру – прохождение частиц (не поглощение!) оставляет след в камере. Следовательно, в биологическом объекте – разрушения по пути. Прошел нейтрон через мозг человека навылет – немного разрушил мозг. Аналогично с яичниками, яйцеклетками и т.д.

Фатально разрушение или нет? Это уж куда попадет и как отреагирует клетка.

Если радиоактивные элементы засели в организме, и не просто в организме – а в определенном органе, то распадаясь (и генерируя новые радиоактивные элементы) внутри органа разрушения намного более прицельные.

Внутри облученного человека (хоть снаружи, хоть изнутри) начинаются ядерные реакции. В некотором смысле, внутри человека начинаются цепные ядерные реакции. Это и есть то, что называется радиационное заражение или наведенная радиация.
(См. также О радиоактивности еды, воды и беккерелях)

Отсюда простой вывод: опасность радиации для человека в Зивертах – это вероятности и точность весьма приблизительная. Особенно когда используются коэффициенты…

Насколько? Да кто-ж его знает… Живой пример, иллюстрация – ситуация со стронцием в Европе. Там же – насколько далеко летит радиоактивное облако от аварии на атомной станции.

Что такое бэр, один Зиверт – это сколько бэр

БЭР – Биологический Эквивалент Рентгена), REM – Roentgen Equivalent Man.

Эта единица измерения применялась в древности, когда массово производили дозиметры.

Доза облучения в один бэр гамма радиации точно равен одному рентгену. В принципе, аналогично соотношению современных единиц измерения “биологической” дозе радиации Зиверт и “физической” дозе радиации Грэй.

Таблица соответствия, соотношения микрорентген в час (мкр/ч) и микрозиверт в час (мкЗв/час)

Приблизительное соотношение микрозиверта и микрорентгена, а точного – не бывает

Если радиация только гамма-радиация, т.е. рентгеновское излучение, то
1 Sv == 1 Gy ≈ 115 R (при такой дозе облучения обычно вылечивают)
1 мкЗв == 1 мкГр ≈ 115 мкР (70 мЗв считается дозой облучения гражданского населения за всю жизнь)
1 микро-Зиверт/час == 1 микро-Грэй/час ≈ 115 микрорентген/час

Однако это очень приблизительное соотношение зивертов и рентгенов. Дело в том, что в рентгенах (так сказать, официально) раньше измеряли именно дозы облучения рентгеновскими лучами (гамма-радиация), а реальная радиация состоит еще из альфа, бета и нейтронного излучений. А их воздействие на организм иное, с повышающими коэффициентами.

В зивертах дозу радиации стали считать где-то с 90-х годов прошлого века.
Понятно, что интерес к радиации – отнюдь не академический, а в связи с техногенными катастрофами и неуверенности в правдивости государственной и корпоративной информации.

Про ядерные реакторы Фукусимы


Аварийные ядерные реакторы в Японии, по СМИ-слухам:
FUKUSHIMA-DAIICHI-1 439 МВт
FUKUSHIMA-DAIICHI-2 760 МВт
FUKUSHIMA-DAIICHI-3 760 МВт
FUKUSHIMA-DAINI-1 1067 МВт
FUKUSHIMA-DAINI-2 1067 МВт
FUKUSHIMA-DAINI-4 1067 МВт

Итого аварийных(?) 5160 мегаватт. Сколько в аварийных реакторах пока(?) потенциальной энергии ядерного топлива и радиации, то неведомо. Печально известный по ядерной катастрофе на Чернобыльской АЭС ядерный реактор РБМК-1000 имел мощность 1000 мегаватт. Другими словами все соседи Японии – Кореи, Китай, Россия имеют пять потенциальных чернобылей в виде фукусимы?

Скажу так: если радиация пахнет озоном, ногти и волосы светятся в темноте, то как боевая/рабочая единица человек пофункционирует еще часов или суток несколько в зависимости от I-IV степени острой лучевой болезни (ОЛБ). Именно такими критериями оперирует радиология, а вовсе не:
здоровый образ жизни, не болеть
успешное развитие и образование ребенка
возможность произвести здоровое, жизнерадостное потомство и иметь внуков-правнуков
и вообще быть красивым, успешным, жить долго и счастливо…

Какая радиация допустима, а какая нет – вопрос философский. Кому-то для запуска болезни из скрытого состояния достаточно выйти на 5 минут голым на улицу, а кто-то после бани может с удовольствием 10 минут валяться в снегу.

Одно дело – скушать грамм урана-235, другое дело – ввести в кровь грамм раствора соли цезия-137, третье дело пройти мимо 10 тонн чистейщего урана-238 в герметичном контейнере, даже из оконного стекла.

Я живу при радиации 5-15 микрорентен в час почти полвека, и ничего. Видел, что около радоновых источников тоже живут, при радиации в 35 мкр/ч. Не заметил, что намного счастливее. Но и заживо-гниющих светящихся местных жителей около радона тоже не встречал. Слухи “про повышенную онкологию” – встречал.

Но если я поднесу радиометр (к которым приклеилось ошибочное название “дозиметр”) к образцу со цезием-137 (аппетитному грибу-маслёнку), и измеритель радиации покажет 35 мкр/ч, а потом унесу радиометр на 5 метров, и там показание будет 10 мкр/час, то… выкину этот образец куда подальше, вопреки тому, что уровень радиации в 35 мкр/ч (0,35 мкЗиверт в час – вполне приемлем как фоновая радиоактивность)

Потому что грамм этого образца скорее всего фонит в 1000 раз больше, чем окружающая меня местность – телесные углы излучения образца и размеры датчика прибора, расстояние считайте сами. 🙂

Если бы я скушал этот грибок, то мой организм бы усвоил часть соединений радиоактивного цезия и десятилетия облучал бы мой нежный организм изнутри. Казалось бы, микродоза, однако радиация – постоянно и в упор по моим клеткам. И еще неизвестно, по каким. Хотя что же тут неизвестного – вполне известно.

Поэтому цифры радиации – это очень условные цифры с точки зрения здоровья. Если радиоактивность воды выше естественного фона, не пейте ее. Вдруг в воде вместо неусваиваемого радона окажется соль радионуклида с длинным периодом полураспада, и организм “эту радиацию” усвоит и расположит где-нибудь в жировых запасах. И будет потом этот радионуклид облучать всю укороченную жизнь, так сказать – “собственная радиация – всегда с тобой”.

Так как при авариях реакторов выбрасываются тяжелые радионуклиды, то тяжелые радионуклиды носятся в воздухе десятилетиями, в очень малой концентрации, но выпасть они могут очень концентрированно, а еще более концентрированно попасть в организм человека с едой. Хрестоматийные примеры: сало, грибы, молоко.

Так что если после ядерной катастрофы фон радиации повысился в пару раз в городе или селе N, расположенном в 3 тысячах километров от места катастрофы, а потом почти вернулся в норму… Лично я бы не спеша переехал в другое место. Но как узнать, а не прошло ли радиоактивное облако и там? Шарик-то круглый… А я люблю дикие грибы.

Вадим Шулман, инженер-метролог
(в статье использованы собственные знания и опыт, а также цифры из Википедии – со всеми вытекающими последствиями)

Вконтакте

Многие сталкиваются с трудностями при определении единиц измерения радиоактивного излучения и практическом использовании полученных значений. Сложности возникают не только из-за их большого разнообразия: беккерели, кюри, зиверты, рентгены, рады, кулоны, ремы и др., но и из-за того, что не все используемые величины связаны между собой кратными соотношениями и при необходимости могут переводиться из одних в другие.

Как разобраться?

Все довольно просто, если отдельно рассматривать единицы, связанные с радиоактивностью, как физическим явлением, и величины, измеряющие воздействие этого явления (ионизирующего излучения) на живые организмы и окружающую среду. А также, если не забывать о внесистемных единицах и единицах радиоактивности, действующих в системе СИ (Международная система единиц), которая была введена в 1982 году и обязательна к использованию во всех учреждениях и предприятиях.

Внесистемная (старая) единица измерения радиоактивности

Кюри (Ки) - первая единица радиоактивности, измеряющая активность 1 грамма чистого радия. Введенная с 1910 года и названная в честь французских ученых К. и М. Кюри, она не связана с какой-либо системой измерения и в последнее время утратила свое практическое значение. В России же кюри, несмотря на действующую систему СИ, разрешенная к использованию в области ядерной физики и медицины без срока ограничения.

Единицы радиоактивности в системе СИ

В СИ используется другая величина - беккерель (Бк), которая определяет распад одного ядра в секунду. Беккерель более удобен в расчетах, чем кюри, поскольку имеет не такие большие значения и позволяет без сложных математических действий по радиоактивности радионуклида определить его количество. Высчитав количество распадов 1 г радона, легко установить соотношение между Ки и Бк: 1 Ки = 3,7*1010 Бк, а также определить активность любого другого радиоактивного элемента.

Измерение ионизирующих излучений

С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения - величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:

  1. Экспозиционная доза - показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица - рентген (Р). Один рентген - большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
  2. Поглощенная доза - энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения - грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица - рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
  3. Эквивалентная доза - поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК -коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).

В системе СИ используется зиверт - эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:

  • для альфа-частиц - 10-20;
  • для гамма- и бета-излучения - 1;
  • для протонов - 5-10;
  • для нейтронов со скоростью до 10 кэВ - 3-5;
  • для нейтронов со скоростью больше 10 кэВ: 10-20;
  • для тяжелых ядер - 20.

Бэр (биологический эквивалент рентгена) или рем (в английском языке rem - Roentgen Equivalent of Man) - внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.


Для количественной оценки радиации используют более 50 единиц измерения. Если изучить некоторые из них, то можно лучше понять, что представляет собой радиация и какое воздействие она оказывает на наш организм. Даже если вы убеждены, что вам никогда не разобраться в этих рентгенах, бэрах и радах, потратьте все же некоторое время для того, чтобы постараться понять их смысл.

Рентген (р). Эта единица названа по имени В. Рентгена, открывшего новый тип лучей. Она использовалась вначале для выражения экспозиционной дозы рентгеновского или гамма- излучения от рентгеновских установок. Однако используется эта единица редко, так как она определяет количество заряженных ионов в воздухе. Для измерения энергии излучения в большинстве случаев используют единицы бэр и рад.

Бэр. Бэр - это сокращение от термина «биологический эквивалент рентгена». Эта единица служит для измерения степени биологического повреждения, вызываемого ионизирующим излучением. Бэр учитывает относительную биологическую эффективность энергии, поглощенной живой тканью. Один бэр приблизительно равен одному рентгену (1 р = 0,88 бэра) и производит то же биологическое действие.

Рад. Рад - сокращение от английского термина «radiation absorbed dose» (доза поглощенной радиации). Эта единица служит для измерения энергии излучения, поглощенной организмом. Существует множество единиц измерения энергии, в том числе калория, эрг, джоуль и ватт - секунда. Исторически для измерения энергии радиоактивного излучения сначала пользовались эргом. Рад равен 100 эргам, поглощенным одним граммом ткани. Для бета-, гамма- и рентгеновского излучения один рад приблизительно равен од¬ному бэру. Для альфа-излучения рад эквивалентен 10-20 бэрам.

ОБЭ (Относительная биологическая эффективность).

ОБЭ , или относительная биологическая эффективность, характеризует различные степени воздействия ионизирующих излучений на наш организм. Альфа-излучение, на¬пример, имеет ОБЭ в 10-20 раз выше, чем бета-излучение. Этот коэффициент зависит от многих факторов, например от того, является облучение внешним или внутренним.

ЛД (Летальная доза)

ЛД, или летальная доза , - это доза, определяющая процент смертности после радиационного облучения. Например, ЛД50 - доза, после получения которой погибает 50 % облученных. ЛД30\50 означает, что в результате облучения погибнет 50 % в течение 30 суток. Для людей эта доза находится в пределах 400-500 бэр. Этот расчет летальной дозы выполнен при условии, что население состоит из взрослых здоровых лиц мужского пола. В действительности необходимо учитывать возрастной состав населения и существующие различия в состоянии здоровья. Поэтому реальная летальная доза для определенной группы населения может оказаться значительно ниже.

Для измерения малых доз используют производные единицы с соответствующими приставками милли- или микро-. Милли- означает одну тысячную, а микро- - одну миллионную часть используемой единицы. Например, миллибэр (мбэр) - это тысячная часть бэра, а микробэр (мкбэр) - миллионная часть бэра. В рентгенах, радах и бэрах измеряется доза облучения. Если нас интересует мощность излучения, мы берем дозу облучения за единицу времени (секунду, минуту, час, сутки, год).

Кюри (Ки). Кюри - единица непосредственного измерения радиоактивности, то есть активности заданного количества определенного вещества. Единица названа в честь Марии и Пьера Кюри, открывших радий. Активность источника измеряют путем подсчета количества радиоактивных распадов в единицу времени. Один кюри равен 37 миллиардам распадов в секунду. Измеряя активность разных веществ, мы можем определить, какое из них является более радиоактивным. Один грамм радия-226 имеет активность, равную одному кюри, а грамм прометия-145 - активность, равную 940 кюри, то есть про- метий-145 почти в 1000 раз активней радия.

Кроме приставок милли- и микро- используют приставки нано- (одна миллиардная) и пико- (одна триллионная). Один пикокюри соответствует двум распадам в минуту. Все эти приставки взяты из метрической системы мер. Из нее же можно взять и приставки кило- (одна тысяча) и мега- (один миллион), если необходимо измерять огромные дозы радиации.
Международное научное сообщество предложило использовать более удобные единицы измерений - грей и беккерель.

Грей (Гр) равен 100 радам. Возможно, в будущем вместо рада будет применяться грей.

Беккерель (Бк) - единица, названная в честь французского физика Беккереля, открывшего радиоактивность. Беккерель соответствует одному радиоактивному рас¬паду в секунду и во много раз меньше кюри. Эту единицу использовали в Европе около десяти лет.

Зиверт (Зв) - это единица нового международного стандарта. Один зиверт равен 100 бэрам. Однако в дан¬ной книге чаще будут использоваться бэр, рад и кюри.
Национальные комитеты по радиационной защите (НКРЗ) большинства европейских стран, а также Беларуси и России установили для населения допустимую норму облучения не более 1 миллизиверта в год. При этом не учитывалось влияние естественного фона и рентгеновских обследований. Однако имеется множество данных, говорящих о том, что безопасного уровня радиоактивного облучения не существует вовсе (так называемая «беспороговая концепция»).

Радиоактивность вещества характеризуется количеством распадов в единицу времени. Чем большее число распадов происходит в единицу времени, тем выше активность вещества. Скорость радиоактивного распада определяется величиной периода полураспада (Т), т. е. промежутком времени, в течение которого активность радиоактивного элемента уменьшается наполовину. Для каждого изотопа скорость радиоактивного распада, как будет показано ниже, весьма важный показатель для гигиенической оценки условий труда и выбора специальных мер защиты.

Для измерения радиоактивности принята единица - распад в секунду, а также внесистемная единица - кюри (к), т. е. активность такого количества радиоактивного вещества, в котором происходит 3,7·10 10 распадов в 1 секунду. В практике применяются единицы, производные от кюри: милликюри (мк), микрокюри (мкк). Концентрация радиоактивных веществ в воздухе и воде измеряется в кюри на 1 л - к/л.

Гамма-активность выражается в миллиграмм-эквивалентах радия. Он представляет собой гамма-эквивалент радиоактивного препарата, ү-излучение которого при тождественных условиях создает такую же мощность дозы, что и ү-излучение 1 мг радия Государственного эталона радия СССР при платиновом фильтре толщиной 0,5 мм. Точечный источник в 1 мг радия в равновесии с продуктами распада после фильтрации через платиновый фильтр толщиной 0,5 мм платины создает на расстоянии 1 см в воздухе мощность дозы 8,4 р в час.

За единицу дозы рентгеновых лучей и ү-лучей принят рентген (р). Один рентген - доза, которая в 1 см 2 воздуха при 0° и давлении 760 мм рт. ст. образует ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака. В практике пользуются производными рентгена: 1 р = 10 3 мр (миллирентген) = 10 6 мкр (микрорентген). Для характеристики распределения дозы во времени вводится понятие мощности дозы: р/час, р/мин, р/сек, мр/час, мр/мин, мр/сек и т. д.

Раньше в качестве единицы поглощенной дозы и дозы излучения (для всех видов излучения) использовали физический эквивалент рентгена (фэр). Фэр - доза любого ионизирующего излучения, при которой энергия, поглощенная в 1 г вещества, равна потере энергии на ионизацию, создаваемую в нем дозой 1 р рентгеновых лучей или у-лучей; 1 фэр для воздуха равен 84 эрг/г, для биологических тканей- 93 эрг/г.

При одной и той же поглощенной дозе биологический эффект разных видов излучения неодинаков; его можно выразить следующими величинами (относительная биологическая эффективность - обэ):

Таким образом, биологический эффект воздействия а-излучения в 10 раз, тепловых нейтронов - в 3 раза, быстрых нейтронов и протонов - в 10 раз больше, чем эффект воздействия у- и рентгеновых лучей.

Различный биологический эффект в основном зависит от плотности ионизации, создаваемой в тканях тем или иным ионизирующим излучением. По предложению Международного конгресса радиологов в 1953 г. за единицу поглощенной дозы энергии ионизирующего излучения в единице массы облучаемого вещества была принята единица рад. Для всех видов ионизирующей радиации рад соответствует поглощенной энергии 100 эрг на 1 г любого вещества. Для учета биологического действия различных видов излучения введена другая единица - биологический эквивалент рада - бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующих излучений, которая вызывает такой же биологический эффект, что и 1 рад рентгеновых или ү-лучей.

Термин «относительная биологическая эффективность» используется обычно при сравнительной оценке действия излучений в радиобиологии. Так как значение обэ зависит от целого ряда причин - энергии излучения, критериев биологического действия и др., при решении задач радиационной безопасности используют так называемые коэффициенты качества - КК, которые представляют собой величины, показывающие зависимость биологического эффекта хронического облучения организма от передачи энергии на единицу длины пробега частицы или кванта. Для определения поглощенной дозы в бэр (Дбэр) необходимо дозу в рад (Драд) умножить на коэффициент качества и коэффициент распределения (КР), учитывающий влияние неоднородного распределения радиоактивных изотопов.

Дбэр = Драд · КК · КР.

Загрязненность рабочих поверхностей и оборудования, рук, спецодежды и других предметов α- и β-излучателями выражается в числе частиц, вылетающих с площади 1 см 2 в 1 минуту.

Читайте также: